
Cultivation and characterization of E. coli protein –
secretion strains

Jurić, Laura

Master's thesis / Diplomski rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of 
Zagreb, Faculty of Food Technology and Biotechnology / Sveučilište u Zagrebu, 
Prehrambeno-biotehnološki fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:159:400382

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-14

Repository / Repozitorij:

Repository of the Faculty of Food Technology and 
Biotechnology

https://urn.nsk.hr/urn:nbn:hr:159:400382
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pbf.unizg.hr
https://repozitorij.pbf.unizg.hr
https://zir.nsk.hr/islandora/object/pbf:3266
https://repozitorij.unizg.hr/islandora/object/pbf:3266
https://dabar.srce.hr/islandora/object/pbf:3266


 
 

UNIVERSITY OF ZAGREB 

FACULTY OF FOOD TECHNOLOGY AND BIOTECHNOLOGY  

 

 

 

 

 

GRADUATE THESIS 

 

 

 

 

 

Zagreb, July 2018.                             Laura Jurić 

             677 / BPI 

 



 

 

CULTIVATION AND 

CHARACTERIZATION OF E. coli 

PROTEIN – SECRETION STRAINS 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This Thesis was made at the University of Bielefeld, Faculty of Technology, The Chair of 

Fermentation Engineering under the guidance of Apl. Prof. Dr. techn. Karl Friehs and with 

the help of M. Sc. Gabriele Kleiner-Grote. 



ACKNOWLEDGEMENTS 

 

I thank to prof. dr. sc. Karl Friehs for accepting me as one of his students, for numerous 

suggestions and all the help with my Thesis. I also thank to M. Sc. Gabriele Kleiner-Grote for 

technical support and assistance. 

I would also like to thank the stuff of the Laboratory of Fermentation technology for the 

pleasant work environment, especially many thanks to Eberhard Wünsch, the sunshine of the 

lab, for guiding me with such patience, for all the encouragement and for making me, so 

many times, to cry out of laughter together, and  dipl. ing. Thomas Schäffer for patience and 

advices during cultivations in bioreactors. I had the biggest luck to share the office with a 

philanthropist dr.sc. Dominik Cholewa, who unselfishly shared his knowledge with me, who 

had given me numerous advices and encouragement. 

Zahvaljujem mentoru prof. dr. sc. Božidaru Šanteku na savjetima i pomoći. 

Hvala i jedinstvenoj teti Vesni Deković iz referade. 

Zahvaljujem obitelji Schagun na bezbroj predivnih uspomena i ogromnoj količini ljubavi 

uživane tijekom mog boravka u Njemačkoj. 

Najviše hvala mojoj obitelji na ljubavi, strpljenju i ohrabrenju. Posebno hvala mome tati čiji 

je životni put meni poslužio kao nepresušno vrelo motivacije za postizanje ovog akademskog 

uspjeha. 

Posebno hvala članovima moje obitelji koji su nas napustili prilikom izrade diplomskog rada, 

didu i Wolfgangu. 

Hvala svim mojim prijateljima koji su mi uljepšali studiranje. 

 

 

 

 

 

 



TEMELJNA DOKUMENTACIJSKA KARTICA 

Diplomski rad 

Sveučilište u Zagrebu 

Prehrambeno-biotehnološki fakultet 

Zavod za biokemijsko inženjerstvo 

Laboratorij za biokemijsko inženjerstvo, industrijsku mikrobiologiju i tehnologiju slada i piva 

Znanstveno područje: Biotehničke znanosti 

Znanstveno polje: Biotehnologija 

UZGOJ I KARAKTERIZACIJA E. coli PROTEIN – SEKRECIJSKIH SOJEVA 

Laura Jurić, 677 / BPI 

Sažetak: Escherichia coli je jedan od najčešće korištenih mikroorganizama za proizvodnju 

rekombinantnih proteina. Veliku većinu proteina proizvodi intracelularno, bilo u citoplazmi ili u 

periplazmi, tako da dobivanje biološki aktivnih proteina predstavlja izazov. Ekstracelularnom 

proizvodnjom proteina izbjeglo bi se mehaničko razbijanje stanica, olakšala izolacija i pročišćavanje 

proteina. Jedan od pristupa, primjenjen i istražen u ovome radu, je upotreba takozvanih leaky 

mutanata. Zbog mutacija u genima koji kodiraju za proteine stanične stijenke, ovi mutanti bi trebali 

pokazivati povećanu sposobnost izlučivanja proteina iz periplazme u hranjivu podlogu nakon 

translokacije proteina prirodno prisutnim bakterijskim translokacijskim mehanizmima. Dva knock-out 

soja bakterije E. coli su kultivirani najprije u tikvicama (bez i s pAppA plazmidom) a zatim i u 

bioreaktorima. Kultivirani sojevi su karakterizirani obzirom na rast, koncentraciju proizvedenog 

proteina i sposobnost sekrecije koristeći fitazu kao reporter protein. 

Ključne riječi: E. coli, stanična stijenka, sekrecija proteina, leaky mutanti, fitaza 

Rad sadrži: 79 stranica, 40 slika, 17 tablica, 38 literaturnih navoda, 2 priloga 

Jezik izvornika: engleski 

Rad je u tiskanom i elektroničkom (pdf format) obliku pohranjen u: Knjižnica Prehrambeno-

biotehnološkog fakulteta, Kačićeva 23, Zagreb 

 

Mentor na Prehrambeno-biotehnološkom fakultetu: prof. dr. sc. Božidar Šantek  

Neposredni voditelj: prof. dr. sc. Karl Friehs 

Pomoć pri izradi: Gabriele Kleiner-Grote, mag. ing. 

 

Stručno povjerenstvo za ocjenu i obranu: 

1. Prof.dr.sc. Blaženka Kos 

2. Prof.dr.sc. Božidar Šantek  

3. Izv.prof.dr.sc. Tonči Rezić 

4. Doc.dr.sc. Andreja Leboš - Pavunc (zamjena) 

 

Datum obrane: 13. srpnja 2018. 

 

 



BASIC DOCUMENTATION CARD 

Graduate Thesis 

University of Zagreb 

Faculty of Food Technology and Biotechnology 

Department of Biochemical Engineering 

Laboratory for Biochemical Engineering, Industrial Microbiology and Malting and Brewing 

Technology 

Scientific area: Biotechnical Sciences 

Scientific field: Biotechnology 

 

CULTIVATION AND CHARACTERIZATION OF E. coli PROTEIN – SECRETION 

STRAINS 

Laura Jurić, 677 / BPI 

Abstract: Escherichia coli is one of the most commonly used microorganisms for production of 

recombinant proteins. The vast majority of proteins are produced intracellular, either in cytoplasm or 

periplasm, so that obtaining a biologically active proteins represents a challenge. With extracellular 

production of proteins, would be avoided cell disruption, ease protein yielding and purification. One 

of the approaches, applied and investigated in this thesis, is using so-called leaky mutants. Due to 

mutations in genes encoding for proteins of the cell membrane, these mutants show an increased 

protein release from periplasm to nutrient medium after protein has been translocated by using natural 

bacterial translocation systems. Two E. coli knock-out strains have been cultivated first in flasks 

(without and with pAppA plasmid) and then in bioreactors. Strains have been characterized regarding 

to their growth, protein production and secretion ability, using phytase as reporter protein. 

Keywords: E. coli, cell wall, secretion, leaky mutants, phytase 

Thesis contains: 79 pages, 40 figures, 17 tables, 38 references, 2 supplements 

Original in: English 

Graduate Thesis in printed and electronic (pdf format) version is deposited in: Library of the 

Faculty of Food Technology and Biotechnology, Kačićeva 23, Zagreb. 

Mentor at Faculty of Food Technology and Biotechnology: Božidar Šantek, PhD, Full professor 

Principal investigator: Karl Friehs, PhD, Prof. 

Technical support and assistance: Gabriele Kleiner-Grote, M. Sc. 

Reviewers: 

1. Blaženka Kos, PhD., Full professor  

2. Božidar Šantek, PhD., Full professor 

3. Tonči Rezić, PhD., Associate professor 

4. Andreja Leboš - Pavunc, PhD., Assistant professor (substitute) 

 

Thesis defended: 13 July 2018 

 



TABLE OF CONTENTS 

1. INTRODUCTION ...................................................................................................................... 1 

2. THEORETICAL BACKGROUND ........................................................................................... 2 

2.1. Composition of cell wall of Escherichia coli ............................................................................... 2 

2.2. Recombinant proteins .................................................................................................................. 3 

2.2.1. Recombinant protein production in E. coli ........................................................................... 4 

2.3. Type II secretion mechanism ....................................................................................................... 6 

2.3.1. Sec translocation ................................................................................................................... 6 

2.3.2. TAT pathway ...................................................................................................................... 10 

2.4. Leaky mutants ............................................................................................................................ 12 

2.5. Phytase AppA ............................................................................................................................ 13 

2.6. Bioreactor cultivation of Escherichia coli ................................................................................. 15 

3. MATERIALS AND METHODS .......................................................................................... 17 

3.1. Chemicals .............................................................................................................................. 17 

3.2. Devices and lab consumables ............................................................................................... 19 

3.3. Software ................................................................................................................................ 21 

3.4. Growth media ........................................................................................................................ 21 

3.5. Plasmid ....................................................................................................................................... 22 

3.6. Bacterial strains ..................................................................................................................... 24 

3.7. Methods...................................................................................................................................... 24 

3.6.1. Preculture setting........................................................................................................... 24 

3.6.2. Strain stock .................................................................................................................... 24 

3.6.3. Flask cultivation ............................................................................................................ 25 

3.6.4. Bioreactor cultivation .................................................................................................... 25 

3.6.5. Cell lysis ........................................................................................................................ 26 

3.6.6. Making chemically competent cells .............................................................................. 27 

3.6.7. Transformation of chemically competent cells ............................................................. 27 

3.7. Analytical methods ............................................................................................................... 28 

3.7.1. Optical density measurement ........................................................................................ 28 

3.7.2. Microscopy ................................................................................................................... 28 

3.7.3. Enzyme activity test ...................................................................................................... 28 

3.7.4. Total protein quantitation – modified Bradford’s protein assay ................................... 29 

3.7.5. SDS – PAGE ................................................................................................................. 30 

4. RESULTS AND DISCUSSION ................................................................................................ 33 

4.1. FLASK CULTIVATION OF DIFFERENT E. coli STRAINS ................................................. 33 

4.1.1. Growth behaviour and OD600 .............................................................................................. 33 

4.2. FLASK CULTIVATION OF DIFFERENT E. coli TRANSFORMED STRAINS WITH 

pAppA PLASMID ............................................................................................................................ 38 



4.2.2. Protein secretion .................................................................................................................. 43 

4.2.3. Enzyme activity................................................................................................................... 47 

4.2.3. SDS – PAGE ....................................................................................................................... 50 

4.3. BIOREACTOR CULTIVATION .............................................................................................. 56 

4.3.1. Bioreactor cultivation of Escherichia coli ΔfhuA pAppA ................................................... 56 

4.3.2. Bioreactor cultivation of Escherichia coli ΔompAompCΔfhuA pAppA .............................. 59 

4.3.3. Protein concentration assay ................................................................................................. 62 

4.3.4. Enzyme assay results .......................................................................................................... 65 

4.3.5. SDS – PAGE ....................................................................................................................... 71 

5. CONCLUSION AND OUTLOOK ........................................................................................... 74 

6. BIBLIOGRAPHY ........................................................................................................................ 76 

7. APPENDIX ................................................................................................................................ 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

1. INTRODUCTION 

The bacterium Escherichia coli is one of the most commonly used hosts for producing 

recombinant proteins. Despite several advantageous characteristics like simplicity, safety, 

short doubling time, simple genetic manipulation, high protein yields and easy cultivation in 

common nutrient media, inadequate secretion to the extracellular environment represents a 

severe drawback for industrial production processes. E. coli belongs to a group of Gram-

negative bacterium, so that its cell envelope comprises two membranes – the inner 

cytoplasmic membrane and the outer membrane. Besides providing protection for the cell and 

structural integrity, the cell envelope represents a bottleneck in extracellular production of 

recombinant proteins. The vast majority of proteins are produced intracellular, either in 

cytoplasm or periplasm, so that the downstream processing represents a challenging task in 

order to obtain biologically active proteins. Downstream processing thereby often includes 

the cell disruption step and the purification. Furthermore, overexpression of recombinant 

genes often results in formation of inactive protein aggregates, i. e. inclusion bodies, so that 

complicated and costly denaturation-refolding processes are necessary. Hence, extracellular 

protein production is highly desirable. 

There have been developed a multiple approaches to enhance the extracellular yield and the 

secretion efficiency of recombinant proteins. One of the approaches, applied and investigated 

in this thesis, is usage of leaky mutants. Due to mutations in genes encoding for proteins of 

cell membrane and outer membrane proteins, these mutants show increased protein release 

from periplasm to extracellular milieu after the protein has been translocated by using natural 

bacterial translocation system. 

Both single and triple knock out mutants, ΔfhuA and ΔompAompCΔfhuA, transformed with 

pAppA plasmid, have been cultivated and characterized according to their growth, protein 

production and enzyme activity with E. coli  phytase AppA as reporter protein. Both strains 

were cultivated in 5 L bioreactors where the aim was to cultivate high cell density batch 

cultures. 
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2. THEORETICAL BACKGROUND 

2.1. Composition of cell wall of Escherichia coli 

 

The cell envelope of Gram-negative bacteria, such as E. coli, is composed of two lipid 

membranes enclosing an aqueous compartment called the periplasm. The cytoplasmic 

membrane is a symmetric phospholipid bilayer containing integral α-helical membrane 

proteins which forms the barrier between the cytoplasm and the periplasm and it is composed 

of approximately 70% phosphatidylethanolamine, 25% phosphatidylglycerol and 5% or less 

cardiolipin (McMorran et al., 2014). The cytoplasmic membrane is a barrier for ions and 

enables a unique ionic composition of cytosol and energy-consuming processes that are 

triggered by the ionic gradients at the membrane. Furthermore, it prevents the uncontrolled 

traverse of proteins and other macromolecules that are synthesized in the cytosol but that 

fulfill their metabolic or structural functions on the outside of the cell. In order to allow 

passage of secretory proteins across the cytoplasmic membrane without compromising its 

structure and function, various transport mechanisms have evolved (Natale et al., 2008). The 

periplasm is the compartment between the cytoplasmic membrane and the outer membrane, 

which contains soluble proteins (McMorran et al., 2014), enzymes that catalyze the formation 

of disulphide bonds (Nakamoto and Bardwell, 2004; Ruiz et al., 2006), as well as 

peptidoglycan cell wall (McMorran et al., 2014). Periplasmic proteins play role in 

maintaining the integrity of the cell envelope. The primary energy source in the periplasm is 

proton-motive force across the inner membrane which is used by complex coupling 

mechanisms. Since no ATP is present in the periplasm, the processes which take place in this 

compartment are independent of nucleotide hydrolysis (McMorran et al., 2014). The 

periplasm is an oxidizing environment (Nakamoto and Bardwell, 2004; Ruiz et al., 2006) and 

it comprises around 10% of the total cell volume (McMorran et al., 2014).  The 

peptidoglycan layer is composed of glycan chains that are crosslinked by oligopeptides, but 

there are also proteins associated with the peptidoglycan layer such as Lpp (Braun’s 

lipoprotein) that covalently anchors the peptidoglycan layer to the outermembrane (Ruiz et 

al., 2006).  The peptidoglycan cell wall plays important roles such as preventing lysis and 

maintaining the shape of the cell (McMorran et al., 2014). The outer membrane is an 

asymmetric bilayer of lipopolysaccharide and phospholipid and contains β-barrel integral 

membrane proteins. The inner leaflet of the asymmetric outer membrane is comprised of 
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phospholipids. It is similar in composition to the cytoplasmic membrane, although the 

phosphatidylethanolamin content is enriched compared with the cytoplasmic membrane. The 

outer leaflet of the outer membrane consist of lipopolysaccharide (LPS), a glycolipid 

typically consisting of a core oligosaccharide, lipid A and an O-antigen. Low permeability of 

the outer membrane is due to the high number of fatty acid chains on lipopolysaccharide in 

contrast to phospholipids, and the fact that these chains are saturated. Both the inner and the 

outer membranes have associated lipoproteins on their periplasmic faces (McMorran et al., 

2014). Due to the high expression levels of pore-forming proteins and transporters that enable 

the diffusion of nutrients into the periplasm, the outer membrane is considerably more 

permeable than the cytoplasmic membrane (Faraldo-Gómez et al., 2003).  

 

2.2. Recombinant proteins 

 

Proteins are the building blocks of life and all living forms synthesize them as part of their 

metabolism. They play a role in the cell cycle, cell signaling, cell adhesion and immune 

responses, and they form cytoskeleton. Special sort of proteins are enzymes which serve as 

biocatalysts, thus increasing the rate of metabolic reactions. Native and recombinant proteins 

are being used in the enzyme industry, the agricultural industry and the biopharmaceutical 

industry. The production of recombinant proteins requires the desired DNA getting cloned; 

then the protein is amplified in the chosen expression system. The use of recombinant DNA 

enabled that important genes, especially mammalian genes, could be amplified and cloned in 

foreign organisms. The cell cultures of bacteria, yeast, molds, plants, insects or mammals are 

being used as protein expression systems, so as transgenic plants and animals. The choice of 

the expression system for recombinant protein production depends on protein functionality, 

quality, yield and production speed. 39% of recombinant proteins are made by E. coli, 35% 

by CHO cells, 15% by yeasts, 10% by other mammalian systems and 1% by other bacteria 

and other systems. Generally, proteins smaller than 30 kD are expressed in a prokaryotic 

system while those larger than 100 kD are expressed in a eukaryotic system. One of the most 

commonly used hosts for the production of the heterologus proteins is enterobacterium E. 

coli. The advantages for choosing E. coli as the expression system are rapid growth, rapid 

expression, ease of culture and genome modifications, high product yields and the least 

expensive production. In addition, E. coli genetics are far better understood than those of any 
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other microorganism. The E. coli system has some drawbacks. E. coli is not suitable for 

production of proteins that require glycosylation and for S-S rich proteins as it cannot remove 

the S-S sequence. During high cell densities cultivation, the acetate is formed resulting in cell 

toxicity. This can be avoided by controlling the level of oxygen, by feeding glucose 

exponentially and keeping the specific growth rate below that which brings on acetate 

production. The proteins with many disulfide bonds are difficult to express and refolding of 

these proteins is difficult. Proteins which are produced as inclusion bodies are inactive, 

aggregated, insoluble and require refolding. In addition, some of the proteins are produced 

together with endotoxins. E. coli in not able to express very large proteins. In cases where 

glycosylation is necessary for proper folding or stability, recombinant yeast, mold, insect or 

mammalian cells are systems of choice (Demain and Vaishnav, 2009). 

2.2.1. Recombinant protein production in E. coli 

 

Recombinant proteins are generally produced either in microbial systems or in mammalian 

cell cultures. Advantages of microbial systems over mammalian cell cultures are production 

of recombinant proteins in a shorter time and at lower cost. Hence, bacteria are particularly 

suitable for producing recombinant proteins (Dassler et al., 2008). Escherichia coli has been 

the most commonly used host for mass-production of recombinant proteins of pharmaceutical 

and industrial importance. This production host has numerous desirable characteristics as 

easy manipulation, fast cell growth, high cell density cultivation and capacity to hold over 

50% of foreign protein in total protein expression (Choi et.al., 2006; Yoon et al., 2010). 

However, E. coli cannot produce mammalian proteins that require post-translational 

modification for activity, or some proteins containing complex disulfide bonds (Choi and 

Lee, 2004). The usage of E. coli as cell factory for secretory production of recombinant 

proteins faces a few challenges for industrial production. Secretory production into the 

periplasm is physically limited by periplasmic volume and results in reduced cell growth and 

increased cellular burden. There is possibility that foreign proteins are degraded by host 

proteases. Also, target protein production is limited by insufficient capacity of the transport 

machinery. High rate of target translation can lead to accumulation inside the cell which 

results in inclusion body formation (Yoon et al., 2010). Process that are particularly preferred 

for producing recombinant proteins in E. coli are those in which the target protein is secreted 

in the correct folding and in high yield directly into the fermentation medium (Dassler et al., 

2008). Recombinant proteins can normally be produced in E. coli in various ways, i.e. 
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intracellular production as soluble protein, intracellular production as inclusion bodies, and 

secretion into the periplasm. In addition, it is possible to use leaky strains which have a defect 

in the outer membrane thereby releasing periplasmic proteins partly into the fermentation 

medium by a nonspecific mechanism. Examples of such leaky mutants are strains with 

altered lipoprotein contents in the outer membrane, e.g. lpp mutants which release the cell’s 

periplasmic proteins into the fermentation medium. Such strains are extremely sensitive to 

various detergents, dyes and EDTA (Dassler et al., 2008). When the target exogenous 

proteins are expressed intracellularly in recombinant E. coli, cell disruption is necessary 

which often results in decrease of protein activities, the increase of sample impurities and 

pyrogen level (mainly from the cell membrane composition). In addition, intracellular 

accumulation of target proteins often results in the formation of inclusion body (Chen et al., 

2014). In comparison with cytosolic production, secretory production of recombinant proteins 

provides several advantages. Those advantages include simpler purification of recombinant 

proteins due to fewer contaminating proteins in the periplasm. Also, periplasmic space 

provides a more oxidative environment than the cytoplasm so that correct formation of 

disulfide bonds is facilitated. In addition, there appears to be much less protease activity in 

the periplasmic space than in the cytoplasm. Another advantage is that the N-terminal amino 

acid residue of the secreted product can be identical to the natural gene product after signal 

sequence is cleaved by a specific signal peptidase (Makrides, 1996; Choi and Lee, 2004). In 

order to obtain recombinant protein extracellularly secreted with E. coli cells, protein 

translocation is necessary across the two membranes – the cell membrane and the outer 

membrane. The advantages of extracellular secretion of target proteins are higher 

recombinant protein yield because the target protein accumulation is not limited by 

intracellular or periplasmic space, reduced risk of intracellular enzyme degradation, better 

environment for protein folding, and elimination of cell disruption step. Periplasmic 

expression of recombinant proteins can often be achieved with the help of a signal peptide. 

On the other hand, the available methods to overcome the outer membrane barrier for 

extracellular production of recombinant proteins are limited. In pursuance of solving this 

problem, various genetic attempts have been made to facilitate the extracellular secretion of 

recombinant proteins in E. coli, including optimization of codon and signal sequence, 

manipulation of transport pathways, fusion expression of outer membrane protein F, YebF or 

osmotically inducible protein Y and fusion expression of carrier protein which can be 

normally secreted extracellularly. Furthermore, the use of wall-less strains and the 
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coexpression of lysis-promoting proteins such as bacteriocin release protein (BRP) or colicin 

E1 lysis protein (Kil) have also been reported (Chen et al., 2014). 

2.3. Type II secretion mechanism 

 

The type II secretion system is a two-step process for the extracellular secretion of proteins 

which includes periplasmic translocation and extracellular transport (Yoon et al., 2010). In 

the the general secretory pathway (type II), proteins to be secreted contain an amino-terminal 

signal sequence that target them to the cytoplasmic membrane. During the translocation, 

signal peptidase removes the signal sequences. In the periplasm, proteins undergo 

transformations such as folding and assembly prior to translocation through the outer 

membrane (Pugsley, 1993; Sandkvist and Bagdasarian, 1996). Periplasmic translocation or 

secretion across the bacterial cytoplasmic membrane can be mediated by three pathways: the 

SecB-dependent pathway, the twin-arginine translocation (TAT) and the signal recognition 

particle (SRP) pathways (Mergulhão et al., 2005). Concerted action of 12-16 proteins are 

constituting a secretion machinery named “secreton” which carries out a extracellular release 

of the periplasmic protein (Yoon et al., 2010). 

2.3.1. Sec translocation 

 

Secretory proteins can be targeted to the Sec translocation complex by two different 

mechanisms, i. e., the co-translational and the posttranslational targeting. In the latter, the 

signal sequence containing secretory protein is released from the ribosome in its synthesis 

completed state and directed to the Sec-translocase. Posttranslational secretory proteins in 

various Gram-negative bacteria are guided to the Sec-translocase by the secretion specific 

chaperone SecB that maintains these proteins in a translocation-competent, unfolded state. 

During co-translational targeting, the signal recognition particle (SRP) binds to the signal 

sequence of the secretory protein while it emerges from the ribosome and the entire ternary 

complex of ribosome/SRP/nascent secretory protein chain are transferred from SRP to Sec-

translocase. The signal peptide (signal sequence) is an amino-terminal extension of the 

secretory protein that is necessary for a correct targeting to the translocation pathway. The 

signal sequence typically has an average length of 20 amino acid residues with a tripartite 

structure, i.e., a positively charged amino-terminal (n-region), a hydrophobic core (h-region) 

and a polar carboxyl-terminal (c-region). The polar c-region is needed for recognition by the 
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type I signal peptidase (or leader peptidase), a membrane bound enzyme that cleaves the 

signal sequence from the mature secretory protein domain during or shortly after 

translocation. The tripartite structure of Sec signal sequences is recognized by the Sec 

components. The positively charged n-region has been implicated in electrostatic interactions 

with membrane phospholipids, whereas the hydrophobic core (h-region) typically consists of 

hydrophobic amino acids with a high propensity to form an α-helix. Both the n- and h-regions 

are critical structural elements recognized by the motor protein SecA and SRP. The binding 

affinity of SecA for signal sequences increases with the number of positive charges in the n-

region, whereas the SRP interaction increases with the hydrophobicity of the h-region (Natale 

et al., 2008).  

2.3.1.1. SecB-dependent pathway  

 

The vast majority of the secretory proteins of E. coli reach SecYEG post-translationally, after 

more than two-thirds of the chain has been synthesized at the ribosome. Here SecA is the 

SecYEG partner and the energizer of the system (Chatzi et al., 2014). The bacterial Sec 

translocase is composed of a peripheral associated ATPase, SecA, and a membrane 

embedded protein conducting channel (PCC) that consist of three integral membrane 

proteins, SecY, SecE and SecG. The protein conducting channel forms a hydrophilic pore for 

secretory proteins to pass the membrane. The essential components of the Sec-translocase are 

the motor SecA and the channel subunits SecY and SecE. SecA can associate with low 

affinity with negatively charged phospholipids and binds with high-affinity to the PCC. 

Binding of SecA to SecYEG leads to conformational change of SecA (Natale et al., 2008). 

SecY is an essential transmembrane protein which forms the central export pore and is 

stabilized and embraced by SecE (Chatzi et al., 2014).     SecG is located at the periphery of 

the channel complex and it makes only limited contact with SecY and SecE (Natale et al., 

2008). While SecG may not be essential for viability or translocation, it facilitates the binding 

of SecA on SecY and its subsequent membrane insertion. Ten trans-membrane helices of 

SecY create a clamshell with its opening, known as lateral gate, facing the lipid bilayer thus 

allowing the hydrophobic signal sequences and trans-membrane helices to diffuse into the 

lipid bilayer (Chatzi et al., 2014). The role of the n-region of signal peptide is believed to be 

targeting the preprotein to the translocase and binding to the negatively charged surface of the 

membrane lipid bilayer. It has been shown that increasing the positive charge in this region 

enhances translocation rates, presumably by increasing the interaction of the preprotein with 
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SecA. Furthermore, a minimum hydrophobicity of signal peptide is necessary for function 

and that translocation efficiency increases with the length and hydrophobicity of the h-region. 

On the SecB-dependent pathway, the ribosome-associated nascent chains of secreted proteins 

bind trigger factor, which is bound to the ribosomes. This association prevents cotranslational 

binding of the nascent chain to SRP components (Mergulhão et al., 2005). Soluble SecA 

appears as a functionally idle state and exhibits a low ATPase activity. Upon binding to 

SecYEG, the protein SecA attains its active state which manifests in conformational change 

of SecA and an increased rate of nucleotide exchange at SecA. SecB does not interact with 

the signal peptide region of secretory proteins, but binds to the polypeptide domains of long 

nascent secretory proteins while they emerge from the ribosome exit tunnel and stabilizes 

them in an unfolded conformation. Chaperone SecB is not essential for translocation. SecB 

facilitates translocation by maintaining secretory proteins in an unfolded conformation and 

actively targets and transfer secretory proteins to the PCC-bound SecA. In the absence of 

SecB, the signal sequence suffices to direct secretory proteins to the SecA. Unlike other 

chaperones, SecB binds specifically to the PCC-associated SecA, and this reaction initiates 

the transfer of the unfolded secretory protein from SecB to SecA (Natale et al., 2008). By 

bidning SecB to SecA, SecB releases the precursor protein that is transferred to SecA. SecA 

recognizes specifically the signal peptide of the preprotein. At this point SecA is bound to the 

SecY subunit of the SecYEG translocation complex. Binding of ATP at one of the two ATP-

binding sites on SecA results in the release of SecB from the membrane. Binding of the 

preprotein to SecA causes translocation of approximately 20 amino acids. With subsequent 

binding of ATP to SecA, promoted is SecA membrane insertion and translocation of an 

additional 15-20 amino acids (Mergulhão et al., 2005), thus a loop of the signal sequence 

with the mature N-terminal region of the secretory protein inserts into the PCC (protein 

conducting channel). Here signal sequence gains access to the catalytic site of leader 

peptidase and processing may take place (Natale et al., 2008). The cleavage of the signal 

sequence occurs on the periplasmic face of the membrane (Chatzi et al., 2014). In a following 

step, SecA-bound ATP is hydrolysed and this results in release of the secretory protein from 

SecA while the inserted and translocated polypeptide domains remain trapped in the PCC 

(Natale et al., 2008). During every catalytic cycle of ATP hydrolysis, 20-30 amino acyl 

residues of the preprotein are translocated (Vassylyev et al., 2006; Chatzi et al., 2014). Next, 

the PCC-bound SecA may re-bind the protein without dissociating from PCC or SecA may 

dissociate from the PCC to allow a new SecA molecule to bind the translocation intermediate 

(Natale et al., 2008). Multiple rounds of SecA insertion and deinsertion from the membrane 
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promote protein translocation through the channel (Mergulhão et al., 2005), as well as 

hydrolysis of ATP (Natale et al., 2008), whereas proton-motive force (PMF) can complete 

translocation when the preprotein is halfway through the translocase. Despite being the most 

commonly used for recombinant protein production, the SecB-dependent pathway has one 

serious drawback. This system is not able to transport folded proteins and hence the secretion 

of proteins that fold rapidly in the cytoplasm may not be possible (Mergulhão et al., 2005). 

2.3.1.2. SRP pathway 

 

The signal recognition particle (SRP) pathway consists of several proteins and one RNA 

molecule (Mergulhão et al., 2005). SRP has a very high affinity for very hydrophobic signal 

sequences and nascent hydrophobic trans-membrane segments (Chatzi et al., 2014). By 

engineering the hydrophobicity of the signal sequence, recombinant proteins can be targeted 

to the SRP pathway (Mergulhão et al., 2005). During “co-translational” secretion, the Signal 

Recognition Particle (SRP), composed of the short 4.5S RNA species and the Ffh (Fifty four 

homologue) protein, recognizes and binds to the ribosomal L23 subunit (Chatzi et al., 2014), 

the site that overlaps the binding site of trigger factor (Mergulhão et al., 2005), and to the 

exiting signal sequence (Chatzi et al., 2014). Whether the peptide is targeted to the membrane 

via the SRP pathway, or post-translationally by the SecB pathway, is determined by the 

characteristics of the nascent peptide. The presence of an N-terminal signal sequence with a 

highly hydrophobic core, combined with a lack of a trigger factor binding site, results in 

cotranslational binding of the nascent chain to cytoplasmic protein Ffh. 4.5S RNA is required 

for binding of the nascent chain to Ffh (Mergulhão et al., 2005). Then ribosome-nascent 

chain complex is delivered to FtsY, its membrane-associated receptor (Chatzi et al., 2014), 

protein found both in the cytoplasm and at the membrane, thus releasing the nascent chain to 

the translocation site, presumably the SecYEG translocon (Mergulhão et al., 2005). The SRP-

FtsY complex dissociates at the expense of GTP (Chatzi et al., 2014). 
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2.3.2. TAT pathway 

 

The Tat pathway appears to be the unique in its ability to transport relatively massive folded 

proteins across energy-transducing cytoplasmic membrane (Robinson et al., 2011). The twin-

arginine translocation system does not require ATP as an energy source, and relies solely on 

the proton motive force (PMF) (Patel et al., 2014). The Tat system’s best-known substrates 

are redox proteins that bind their cofactors in the cytoplams, such as FeS, NiFe centres and 

molybdopetrin, prior to export to the periplasm (Robinson et al., 2011). However, there are 

also Tat substrates which lack cofactors. Obviously, cofactor assembly is not the only reason 

for Tat dependent transport (Natale et al., 2008). The substrates for the Tat pathway are 

exported posttranslationally in a process mediated by N-terminal signal peptides. Many Tat 

substrates are cofactor-containing, so that after synthesis and initial folding they acquire 

redox cofactors in the cytoplasm, often with the aid of chaperones and substrate-specific 

guidance factors (Robinson et al., 2011). Furthermore, there are many general and specific 

chaperones which can bind Tat signal sequences and help to protect Tat signal sequences 

degradation. The term “proofreading” is used to describe a function that prevent targeting 

prior to folding, which includes specific chaperones that prevent translocase interactions prior 

to cofactor insertion and folding, leading in many cases to an oligomerization of the substrate 

protein (Natale et al., 2008). The TAT system is capable of secreting folded proteins by 

employing a particular signal peptide containing a twin-arginine sequence (Choi and Lee, 

2004). TAT signal peptides are composed of three regions as well as Sec signal peptides: a c-

region that contains the cleavage site, a hydrophobic region (h-region) and a positively 

charged region (n-region) (Mergulhão et al., 2005). Studies on Tat signal peptides revealed a 

highly conserved SRRxFLK motif (where x is a polar amino acid (Robinson et al., 2001)), 

where three determinants appear to be important: the twin-arginine pair, the hydrophilic -1 

residue and the hydrophobic +2 residue (-/+ relative to the twin-arginine pair). The C-region 

of certain Tat signal peptides houses basic residues, which are seldom found in the same 

region of Sec signal peptides. The C-terminal region contains an A-x-A motif, which is a 

consensus cleavage site for removal of the signal peptide by signal peptidase. The Tat signal 

peptides are longer than Sec-specific signals (on average 38 to 24 amino acids, respectively) 

(Patel et al., 2014) and usually, the hydrophobic region of TAT signal peptides is less 

hydrophobic in comparison with that of Sec leader peptides (Mergulhão et al., 2005). On the 

TAT pathway, the substrate bearing a twin-arginine signal peptide binds initially to TatBC 
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complex in a resting membrane. Bounding of the precursor to the substrate-binding TatBC 

complex, results in the association of the TatA complex with the TatBC complex in the 

presence of a ΔpH (Patel et al., 2014). The substrate is then transported by a mechanism 

requiring the proton motive force, after which it is processed to the mature size (Robinson et 

al., 2011). Once the transport has been done, TatA disassembles from TatBC and the Tat 

substrate is released from the membrane by a cleavage of type I signal sequences peptidases 

(Yahr and Wickner, 2001; Natale et al., 2008). Three integral membrane proteins, TatA (9.6 

kDa), TatB (18.5 kDa) and TatC (28.9 kDa), usually constitute the Tat translocase system. 

These proteins are encoded by the tatABC operon and reside in the cytoplasmic membrane 

arranged as a Tat(A)BC substrate binding complex and a separate TatA complex. In E. coli, 

there is no evidence for a specific role of TatE, a paralog of TatA, and it is encoded elsewhere 

in the genome. Both TatA and TatB are single-span transmembrane proteins that possess a 

highly charged, unstructured cytoplasmically-exposed C-terminus, single-span 

transmembrane helix; hinge region; amphipathic helix lying along the cytoplasm-membrane 

interface and a short periplasmic N-terminal region. In contrast, TatC is a polytopic protein 

that presumably contains 6 transmembrane spans, with both the N- and C- termini in the 

cytoplasm. The tatABC gene products form two distinct membrane complexes at steady state: 

a separate TatA complex and a TatBC-containing substrate binding complex where most of 

TatB and –C are found at 1:1 stoichiometric ratio. TatC is the largest and most conserved 

component of the Tat pathway where it plays a central role in the translocation event, ranging 

from substrate recognition and binding, to the recruitment of other Tat components (Patel et 

al., 2014). Although TatA and TatB share 25% sequence identity and the two subunits have a 

similar secondary structure, these two subunits cannot substitute for each other, even when 

they are overexpressed (Sargent et al., 1999; Robinson et al., 2011). It is believed that 

physiological role of Tat system is to extend the set of translocatable substrates to those that 

fold prior to translocation and that it is used only in cases where cytoplasmic folding excludes 

the use of the Sec system (Natale et al., 2008). It has been reported that transport via the TAT 

pathway is slower and less efficient than the Sec pathway. Furthermore, it has been shown 

that this secretion mechanism is rapidly saturated, so that coexpression of the tatABC operon 

is required for large-scale production. The requirement for coexpression presents a severe 

disadvantage for the application of the TAT pathway for production processes. However, 

unlike the SecB or the SRP pathways, the TAT pathway is capable of transporting folded 

protein across the inner membrane (Mergulhão et al., 2005), especially proteins that contain 
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complex disulfide bonds or that may be folded before they reach the Sec machinery (Choi 

and Lee, 2004). 

 

 

2.4. Leaky mutants 

 

Leaky mutants of E. coli are mutants which, owing to mutations in structural elements of the 

outer cell membrane or the cell wall, show increased release of periplasmic proteins into the 

medium (Shokri et al., 2003; Wich and Dassler, 2008) and allow the entry of molecules (Ruiz 

et al., 2006). Weakened cell wall contributes to the cell sensitivity due to influences from the 

outer environment (Wang, 2002). A set of precisely defined, single-gene deletions of all 

nonessential genes in Escherichia coli K-12 strain BW25113 was made to create the KEIO 

strain collection. Escherichia coli K-12 has been one of the best-characterized organisms in 

molecular biology. BW25113 is a strain with a well-defined pedigree that has not been 

subjected to mutagens. Open-reading frame coding regions were replaced with a kanamycin 

cassette flanked by FLP (flippase) recognition target (FRT) sites by using a one-step method 

(λ Red system) for inactivation of chromosomal genes and primers designed to create in-

frame deletions upon excision of the resistance cassette. Of 4186 genes targeted, mutants 

were obtained for 3864. Two independent mutants were saved for every deleted gene in order 

to alleviate problems encountered in high-throughput studies (Baba et al., 2006). E. coli 

JW0146-2 strain has fhuA deleted which codes for a monomeric protein FhuA, a β barrel 

composed of 22 antiparallel transmembrane β strands (Ferguson et al., 1998). FhuA protein 

(ferric hydroxamate uptake protein component A, 714 residues) has a physiological function 

in the uptake of the siderophore ferrichrome, i.e., it facilitates ligand-gated transport of 

ferrichrome-bound iron across outer membranes (Locher et al., 1998). In addition to bining 

ferrichrome-iron, FhuA in the outer membrane of Escherichia coli also functions as the 

primary receptor for the structurally related antibiotic albomycin, for the bacterial toxin 

colicin M, for the peptide antibiotic microcin 25, and for several bacteriophages (T1, T5, UC-

1, and φ80) (Ferguson et al., 1998). Another strain used in this thesis is triple knock-out 

strain ∆ompA ∆ompC ∆fhuA. Gene ompA codes for OmpA - outer membrane protein A, the 

most well-studied major outer membrane protein in E. coli (Wang, 2002) with typically 100 

000 copies per cell (Ortiz-Suarez et al., 2016). The outer membrane protein A (OmpA) which 
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forms a non-specific diffusion pore is a 325-residue protein and it is the most common 

protein component of the outer membrane of E. coli (Ishida et al., 2014). The function of 

heat-modifiable OmpA is thought to contribute to the structural integrity of the outer 

membrane, along with peptidoglycan-associated lipoprotein and murein lipoprotein, by 

holding peptidoglycan and the outer membrane together as the whole structure in E. coli. 

Furthermore, OmpA serves as a receptor of colicin and several phages, it is required for F-

conjugation and some small molecules may pass the β-barrel of OmpA and cross the outer 

membrane (Wang, 2002). Within the outer membrane resides the N-terminal domain of 

OmpA which is an eight-stranded transmembrane β-barrel. The soluble C-terminal domain is 

located in the periplasm. A 15-amino-acid linker region connects the barrel to the C-terminal 

domain (Ortiz-Suarez et al., 2016). The β-barrel of OmpA can be in either an open or closed 

state, thus causing different levels of conductance (Ortiz-Suarez et al., 2016). Wang has 

propored that OmpA is composed of three functional domains including a hydrophilic 

extracellular mass, a β-barrel transmembrane structure, and a peptidoglycan binding domain 

(Wang, 2002). Second gene, ompC codes for protein OmpC. It belongs to a group of porin 

proteins which form relatively nonspecific pores which allow diffusion of nutrients across the 

outer membrane, facilitate the transport of colicins and serve as receptors for various 

bacteriophages. It is tightly associated with peptidoglycan and lipopolysaccharide (Misra and 

Benson, 1988). The sequence of OmpC is 60% identical to another porin, OmpF. OmpC is 

slightly more cation selective than OmpF and its pore has been predicted to be smaller 

(Nikaido, 2003; Baslé et al., 2006). Both major outer membrane proteins OmpC and OmpF in 

E. coli are known as porins because they form passive diffusion pores which allow small 

molecular weight hydrophilic materials across the outer membrane (Nikaido, 1979; Mizuno 

et al., 1983). In E. coli they are among the most abundant outer membrane proteins with 

about 105 copies per cell and serve as general pathways for the influx of small molecules (e.g. 

molecular weight under 600) (Masi and Pagès, 2013). Many environmental factors have been 

identified that alter OmpF and OmpC expression, including temperature, pH, osmolarity, 

nutrient availability, and various toxins (Forst and Inouye, 1988; Pratt et al., 1996; Liu and 

Ferenci, 2001; Batchelor et al., 2005). 

2.5. Phytase AppA 

 

Phytates are the primary storage form of both phosphate and inositol in plants, predominantly 

occurring in cereal grains, oilseeds and legumes (Haefner et al., 2005). Phytase (myo-inositol 
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hexakisphosphate phosphohydrolase, EC 3.1.3.8 for 3-phytase and 3.1.8.26 for 6-phytase) 

catalyses the release of inorganic phosphate and myo-inositol from phytate (myo-inositol 

hexakiphosphate) (Pandey et al., 2001), the salt of phytic acid (Haefner et al., 2005). Phytic 

acid (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate)  is a polyanionic chelating 

agent that forms insoluble complexes with nutritionally important cations, e.g., Ca2+, Fe2+, 

Mg2+, Zn2+,Cu2+ and Mn2+ (Haefner et al., 2005), thereby decreasing their bioavailability 

(Greiner et al., 1993). Furthermore, it can also form complexes with amino acids and proteins 

at both alkaline and acidic pH. Microbial phytase is able to enhance protein digestibility 

(Haefner et al., 2005). Phytase has been added as a supplement to animal feed for 

monogastric animals to eliminate the negative effects of phytic acid in animal nutrition and to 

enhance plant phosphorous utilization (Morz et al., 1994, Miksch et al., 2002). Phytase is 

used in commercial diets of swine, poultry and fish to improve the availability of energy, 

phosphorous, minerals and amino acids. Without enzymatic degradation by phytases, the 

phytate molecule together with nutrients bound to it, cannot be absorbed in the digestive tract 

and consequently accumulates in fecial material. Since the availability of phosphorous in 

plant-derived animal food is low, diets for nonruminants have been supplemented with 

inorganic phosphates. The manure of livestock has been applied to the soil, thus leading to 

accumulation of phosphate in the soil. Outcome of this could be long-term leaching of 

phosphate into ground water and eutrophication of surface waters. Phosphorus excretion of 

monogastric animals can be reduced between 25 and 50% by replacing inorganic phosphates 

with microbial phytase (Haefner et al., 2005). Phytase activity in microorganisms occurs 

most frequently in fungi, in particular Aspergilli, bacteria, yeast and rumen microorganisms 

(Greiner et al., 1993). Main features of E. coli phytase are the highest specific activity of all 

phytases tested so far and in contrast with commonly used Aspergillus phytases, the pH 

optimum is situated more in the acid range and E. coli phytase is resistant to proteolytic 

degradation in stomach of monogastric animals (Miksch et al., 2002). Furthermore, E. coli 

phytase is more resistant to high temperatures during pelleting process (Kleist et al., 2003). E. 

coli phytase is a periplasmatic 6-phytase (Greiner et al., 1993) with a molecular weight of 

about 45000 (with signal sequence being cleaved) and an isoelectric point of 6.3 (Dassa et al., 

1980). Since the phytase is periplasmic enzyme, extracellular production is required for this 

industial enzyme in order to facilitate downstream processing, e.g. cell disruption and the 

separation of cell debris (Miksch et al., 2002). 
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2.6. Bioreactor cultivation of Escherichia coli 

 

The overall goal in production of recombinant proteins is to simultaneously reach a high cell 

density, a high product quality and a high specific recombinant protein production rate. 

A high cell density can only be achieved by fed-batch cultivation that corresponds to a feed 

profile, which leads to a continuously decreasing growth rate during the process (Shokri et 

al., 2003). However, the extended culture period in fed-batch cultures is the reason why the 

production of acetate is greater in fed-batch rather than in batch culture (Lee, 1996). High 

productivities are obtained through either a high concentration or a high activity of the bio-

catalyst (Knoll et al., 2007). Cultivation of E. coli to high cell concentrations is necessary for 

obtaining the maximal volumetric productivities. In response to excess carbon or oxygen 

limitation, cells produce growth-inhibiting acidic by-products of incomplete substrate 

oxidation such as acetic acid. Prevention of the accumulation of toxic levels of acetic acid is 

the main task for achieving high cell concentrations in bioreactors (Korz et al., 1995). 

Development of high cell density culture (HCDC) techniques for cultivation of E. coli cells 

has improved productivity and provided advantages such as lower production costs, reduced 

investment in equipment, reduced wastewater, enhanced downstream processing and reduced 

culture volume (Lee, 1996). Some of the problems that can arise in high-cell-density cultures 

are limited capacity for O2 supply, limitation and/or inhibition of substrates and formation of 

metabolic by-products. In addition, the final cell density can be limited by a several factors 

such as formation of metabolic by-products, heat and generation of CO2 (Riesenberg, 1991). 

Temperature of cultivation impacts cell metabolism. Nutrient uptake and growth rate can be 

reduced by lowering the culture temperature from 37°C to 26-30°C. This results in reduced 

formation of toxic by-products and the generation of metabolic heat. Furthermore, it also 

reduces cellular oxygen demand and formation of inclusion bodies. High partial-pressure of 

CO2 (>0.3 atm) stimulates acetate formation and reduces growth rate. With the increase of 

bioreactor size, efficiency of mixing is being reduced causing unequal distribution of 

nutrients in HCDCs. It has been demonstrated that some nutrients, such as nitrogen and 

carbon sources, can inhibit cell growth when they are present above a certain concentrations. 

For example, glucose inhibits growth at concentration above 50 g L-1, ammonia at 

concentration above 3 g L-1 and phosphorus at concentration above 10 g L-1. Therefore, 

HCDCs are started with concentrations of nutrients below the inhibitory thresholds and as 

necessary to maintain high growth rates. Three types of media have been known: defined, 
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semi-defined and complex. It is necessary that medium for growing cells to a high density 

contains all the necessary components for supporting cell growth, while avoiding inhibition. 

In HCDCs ammonium hydroxide is often used both as a nitrogen source and as a base for 

adjustment of culture pH (Lee, 1996). The formation of metabolic by-products, such as 

acetate, ethanol, D-lactate and L-glutamic acid, during aerobic growth in media containing 

glucose, pyruvate, glycerol and/or complex components might become a serious problem if 

the by-products accumulate to concentrations which inhibit the growth (Riesenberg, 1991). 

The major problem in fermentation is the formation of acetate resulting in cell toxicity. 

Acetate is produced when E. coli is grown under anaerobic or oxygen-limited conditions. 

Also, it has been shown that E. coli cultures growing in the presence of excess glucose can 

also produce acetate even under aerobic conditions. A high concentration of acetate (i.e., 

above 5 g L-1 at pH 7) inhibits the growth rate and reduces biomass yield (Kleist et al. 2003). 

Production of acetate happens when carbon flux into the central metabolic pathway exceeds 

the capacity for energy generation within the cell and biosynthetic demands; the main cause 

can be saturation of the electron transport chain and/or the tricarboxyl acid (TCA) cycle. 

Under aerobic conditions, there are two enzymatic pathways for formation of the main by-

product acetate. The major one is the acetate kinase phosphotransacetylase pathway starting 

from acetyl-coenzyme A, and in the minor one acetate is derived directly from pyruvate by 

pyruvate oxidase. Low solubility of oxygen is limiting factor in HCDCs. Oxygen limitation 

can be prevented by increasing the aeration rate or agitation speed, using oxygen-enriched air 

or pure oxygen (Lee, 1996), decreasing the temperature and pressurizing the culture 

(Riesenberg, 1991). Concentration of the saturated dissolved oxygen (DO) in water at 1atm 

and 25°C is about 7 mg L-1 (Lee, 1996). Hence, the challenging task in biochemical 

engineering presents sufficient oxygenation of aerobic fermentation process, especially in 

high cell density cultivation (HCDC) where the oxygen demand exceeds by far the maximum 

oxygen transfer capacity (OTRmax) of conventional bioreactors such as bubble columns or 

stirred tanks. The microbial growth and activity are limited by the dissolved oxygen 

concentration in the culture medium. Oxygen limitation results in diminish of the growth and 

production rates and for the microorganisms which are capable of anaerobic metabolism, the 

metabolic pathway can be shifted in an unfavorable direction thus declining product yield. 

The most commonly applied for overcoming oxygen limitation by increasing the OTRmax of 

bioreactors are aeration using oxygen enriched air and special aeration systems (Knoll et al., 

2007). 
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3. MATERIALS AND METHODS 

3.1.Chemicals 

 

Following table (Table 1.) lists all used chemicals and their manufacturers. In Table 2., there 

is a list of special chemicals – kits and ladders (Figure 1.). Chemicals are dissolved in ddH20 

except for 4-Nitrophenyl phosphate disodium salt hexahydrate, which is dissolved in glycine-

HCl buffer made as explained later in chapter Enzyme activity test.  

Table 1. List of used chemicals and their manufacturers. 

Chemicals manufacturer 

4-Nitrophenol Sigma-Aldrich Chemie GmbH 

4-Nitrophenyl phosphate disodium salt hexahydrate Sigma-Aldrich Chemie GmbH 

agar – agar Carl Roth GmbH + Co. KG 

ammonium persulphate Carl Roth GmbH + Co. KG 

Bis-/Acrylamide (0,8 %, 30 %) Carl Roth GmbH + Co. KG 

bromophenol blue Carl Roth GmbH + Co. KG 

BSA (albumin fraction V) Carl Roth GmbH + Co. KG 

Coomassie Brilliant Blue G – 250 Carl Roth GmbH + Co. KG 

dipotassium phosphate VWR International GmbH 

glycerine (99,5 %) Emery Oleochemicals GmbH 

Glycine Carl Roth GmbH + Co. KG 

IPTG Carl Roth GmbH + Co. KG 

Isopropanol VWR International GmbH 

kanamycin sulphate Carl Roth GmbH + Co. KG 

natrium carbonate Carl Roth GmbH + Co. KG 

natrium chloride Fisher Scientific GmbH 

natrium hydroxide Carl Roth GmbH + Co. KG 
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phosphoric acid Carl Roth GmbH + Co. KG 

Pluronic (antifoam) BASF SE 

potassium dihydrogen phosphate VWR International GmbH 

SDS Carl Roth GmbH + Co. KG 

soya peptone UD Chemie GmbH 

TEMED Carl Roth GmbH + Co. KG 

Tris Fisher Scientific GmbH 

Tris-HCl Fisher Scientific GmbH 

yeast extract Ohly GmbH 

CaCl2 PanReac AppliChem ITW 

 

Table 2. Special chemicals and their manufacturers. 

Chemical manufacturer 

PageRuler Prestained Ladder Thermo Fisher Scientific Inc. 

Roti®–Nanoquant kit for protein concentration test 

K880 

Carl Roth GmbH + CO. KG 

 



19 
 

 

Figure 1. PageRuler Prestained Ladder by Thermo Fisher Scientific Inc. on SDS 

electrophoresis gel. (www.thermofisher.comordercatalogproduct26616, access date May 4, 

2018) 

3.2. Devices and lab consumables 

 

Tables in this chapter show list of all used devices, their model and manufacturer, as well as 

lab consumables and their manufacturers. 

Table 3. List of used devices with respective model and manufacturer. 

Device Model manufacturer 

autoclave V – 150 

D – 65 

Systec GmbH 

heat block Blockthermostat BT 100 
Kleinfeld Labortechnik 

GmbH 

light microscope BX40 Olympus Corporation 

magnet mixer IKAMAG REO IKA 

pH - meter 691 Metrohm AG 

Shaker Lab – Shaker LS – X Kühner AG 
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spectrophotometer  BioPhotometer Eppendorf AG 

spectrophotometer 

(microplates) 
SPECTRA MAX 250 

Molecular Devices 

Corporation 

Ribolyser TeSeE PRECESS 24 Bio-Rad Laboratories 

Vortex Vortex – Genie 2 Scientific Industries, Inc. 

Centrifuges 3-30KS 

1-15 

Sigma Laborzentrifugen 

GmbH 

orbital rocking shaker POLYMAX 2040 
Heidolph Instruments 

GmbH and Co. KG 

electrophoresis power 

supplier 
Standard Power Pack P25 Biometra GmbH 

analytical balance PM34-K DeltaRange Mettler – Toledo GmbH 

agarose gel electrophoresis 

system 
MINI GEL II VWR International GmbH 

precision balance AE 260 DeltaRange Mettler – Toledo GmbH 

Freezer MDF – U5386S SANYO Electric CO., Ltd 

vacuum dryer VT 5042 EK Heraeus 

ultrasound homogenizer Sonifier 450 BRANSON 

 

Table 4. List of used lab consumables and their manufacturers. 

Item manufacturer 

BRANDplates® (96–well microplates), polystyrene: 350 µL Brand GmbH + Co. KG 

 

cuvette, polystyrene, 1.5 mL Brand GmbH + Co. KG 
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pipette tips, polypropylene: 1000, 200 and 10 µL Greiner Bio-One AG 

 

microcentrifuge tube, polypropylene: 1,5 mL and 2 mL Greiner Bio-One AG 

 

Erlenmeyer flask with baffles, glass: 300 ml, 500 mL and 1000 mL Schott Duran 

 

Erlenmeyer flask, glass: 300 mL Schott Duran 

 

conical centrifuge tubes, polypropylene: 15 mL and 50 mL Greiner Bio-One AG 

3.3. Software 

 

Table 5. below shows list of software used in this thesis. 

Table 5. List of used software and respective developer companies. 

Name developer company 

SoftMax® Pro Molecular Devices Corporation 

BiOSCADA Lab BIOENGINEERING 

 

3.4. Growth media  

 

In this thesis, two different media were used: LB medium (Luria – Bertani) to grow a 

preculture and make glycerine cultures, and TB medium (Terrific broth) to grow main culture 

in flasks as well for the cultivation of bacteria in the bioreactor (Table 5. and 6.). If needed, 

kanamycin was added to a final concentration of 50 µg/mL. Media were sterilized in 

autoclave in 121 ºC and pressure of 1 bar.  

Table 6. Composition of Luria-Bertani medium, pH 7,4. 

Component concentration [g/L] 
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soya peptone 10 

yeast extract 5 

sodium chloride 10 

*to make agar plates, 15 g/L agar-agar added 

Table 7. Composition of Terrific broth medium 

Component concentration [g/L] 

soya peptone 12,0 

yeast extract 24,0 

Glycerine 5,0 

dipotassium phosphate, K2HPO4* 12,5 

potassium dihydrogen phosphate, KH2PO4* 2,4 

* autoclaved separately from other components 

 

3.5. Plasmid  

 

In this paper plasmid pAppA1 was used. Figure 2. below shows plasmid map which contains 

all important features closely explained in Table 8.  
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Figure 2. Map of plasmid pAppA1 made with SnapGene software, GSL Biotech LLC. 

Table 8. Explanation of abbreviations on plasmid map showed on Figure 2. above. 

Contractions meaning 

AppA phytase AppA from E. coli with native 

signal sequence for translocation 

BlaP promoter for ampicillin resistance 

KanR kanamycin resistance 

AmpR ampicillin resistance 

LacI repressor for binding to lac-operator 

ori  high copy origin of replication, 

ColE1/pMB1/pBR332/pUC 

T5 promoter promoter induced by IPTG 
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rrnB1 B2 T1 txn terminator structural terminator 

M13 forward the binding site for primer 

 

3.6. Bacterial strains 

 

In Table 9. below, there is a list of E. coli strains used for this thesis. Each of them is 

transformed with previously explained plasmid pAppA1.  

Table 9. List of bacterial strains with respective genotype used in Working Group 

Fermentation technology laboratory. Strains are originally from KEIO collection and 

deletions written in column “strain” were made in Laboratory for Fermentation Technology.  

Strain genotype 

E. coli JW0146-2 

CGSC 8416 

KEIO ∆fhuA766 

F-, Δ(araD-araB)567, ΔfhuA766::kan, 

ΔlacZ4787(::rrnB-3), λ-, rph-1, Δ(rhaD-rhaB)568, 

hsdR514 

E. coli JW0940-6 

∆ompA  ∆ompC 

∆fhuA 

F-, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3), λ-

, ΔompA772 rph-1, Δ(rhaD-rhaB)568, hsdR514, 

∆ompC, ∆fhuA::kan 

 

3.7. Methods 

 

3.6.1. Preculture setting 

 

To grow preculture, 50 µL of glycerine culture was added to 30 mL of LB medium 

(composition described in chapter Growth media) and grown in 300 mL flasks without 

baffles. Preculture used for bioreactor cultivation is grown in 100 mL of LB medium in 1 L 

flasks with baffles. Also, kanamycin is added in final concentration of 50 µg/mL. Preculture 

was cultivated on shaker (120 rpm, 50 mm rotation radius) for 16 hours on 37º C. 

3.6.2. Strain stock 

 



25 
 

To keep bacterial culture over longer time, 800 µL of preculture was added to 200 µL of 

87 % glycerine in a 1,5-mL reaction vessel. Then, the sample was mixed on vortex and 

frozen in liquid nitrogen. Glycerine culture was kept in -80º C. Short time storage of samples 

to be analysed was in -20 ºC. Agar plates were stored in -4 ºC. 

3.6.3. Flask cultivation 

 

To set a main culture, in 1000 mL Erlenmeyer flask with four baffles, 100 mL of TB medium 

was added. Also, kanamycin was added in final concentration of 50 µg/mL. Volume of 

inoculum, i.e. preculture, was calculated to set the initial OD600 value to 0.2. Cultivation was 

performed on a shaker (120 rpm, 50 mm rotation radius) at 37 º C until OD600 reached a value 

between 0.8 and 0.9.  At this point, IPTG as inductor was added to a final concentration of 1 

mM. Samples from each of three biological replicates were taken at three time points: 0 hours 

(immediately after induction), 1 hours, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours and 24 

hours after induction. 500 µL- samples were taken in each time point for measuring OD600 

and microscopy control.  

To get supernatant samples, 500 µL from each biological replicate was taken and centrifuged 

for 10 minutes at 4 º C and 7000 g. Supernatant samples were stored at -20 º C. 

Also, 1 mL of cell culture from each biological replicate was taken and stored at -20 º C for 

SDS-PAGE. 

3.6.4. Bioreactor cultivation 

 

Selected strains were cultivated in a bioreactor. TB medium was used as a nutrient medium 

(composition in chapter Materials) to which, after sterilization, antibiotic kanamycin was 

added to final concentration of 50 µg/mL. Additionally, inductor IPTG was added to final 

concentration of 1 mM when the OD600 was around 1. The software BiOSCADA Lab by 

BiOENGINEERING was used to follow the course of fermentation and collect process data.  

The single knock-out E. coli strain ΔfhuA and the triple knock-out ΔompAΔompCΔfhuA were 

cultivated in bioreactor NLF 3. The total volume of the bioreactor was 7 L while the working 

volume was 5 L. Conditions of cultivation are shown in Table 10. below. 
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Table 10. Conditions of cultivation in bioreactors. 

conditions 

bioreactor  

NLF 3 

pH 7.4 

37º C 

0.2 bar 

5 NL/m 

30 % 

92-1067 rpm 

temperature 

overpressure 

air flow 

pO2 

stirrer speed 

 

To keep a constant pH during fermentations, 10 % phosphoric acid and 2 M NaOH are used 

and sterilized prior to use as well as antifoam Pluronic. 

A stirrer cascade is used to control oxygen concentration in nutrient medium. The lower limit 

was 92 rpm (rotations per minute) and the upper one 1067 rpm. pO2 signal is adjusting pO2 

level and if the level is lower than the setpoint, the pO2 control-unit gives a signal to the 

stirrer control unit to increase the stirrer frequency. 

Cell growth was monitored by measuring optical density. Initial cell density was 0.2. Samples 

were taken by autosampler. After induction, samples were taken at sixteen time points. First 

sample was taken right after the induction and others were taken every hour until sixth hour 

after induction. Afterwards, every two hours samples were taken until twenty-fourth hour 

after the induction. Samples were taken aseptically using a steam-sterilisable sampling valve 

of bioreactor and prepared in a same way as described in chapter Flask cultivation.  

Bioreactor specification is attached in Appendix. 

3.6.5. Cell lysis 

 

Sonication is used to lyse bacterial cells cultivated in flasks in following way: 1 mL of 

defrosted sample was put in an ice-water bath and sonicated in three cycles for 30 seconds 

with 30 seconds break in between the cycles. Ultrasound homogeniser settings were: Timer 
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on hold, Duty Cycle on constant and Output Control was set on 2. The efficiency of 

sonication is monitored by microscopy. If cells were not disrupted, another cycle of 

sonication is repeated. Then, samples were centrifuged for 10 minutes on 4 º C and 16000 g. 

The precipitate was discarded, and the supernatant was kept on -20 º C. 

Cells were lysed mechanically in a Ribolyser TeSeE PRECESS 24 Homogenizer cell 

disrupter at speed 6500 rpm, three times for 30 s. 800 μL of defrostet sample were taken. The 

efficiency of cell lysis is monitored by microscopy. If cells were not distupted, another cycle 

is repeated. Then, samples were centrifuged for 10 minutes on 2 ºC and 14 000 rpm. The 

precipitate was discarded, and the supernatant was kept on -20 º C. 

3.6.6. Making chemically competent cells 

 

To set a main culture, in 300 mL Erlenmeyer flask, 60 mL of LB medium was added. Also, 

kanamycin was added in final concentration of 50 µg/mL. Volume of inoculums, i.e. 

preculture, was calculated to set the initial OD600 value to 0.2. Cultivation was performed on 

a shaker (120 rpm, 50 mm rotation radius) at 37 º C until OD600 reached a value between 0.8 

and 0.9. Then the cultivation stopped, and the cell culture was cooled down on ice for 15 min. 

The cell culture was then centrifuged for 10 min at 4 º C and 4000 g. The supernatant was 

discarded. The residues of the supernatant were absorbed with paper. The cells were 

resuspended in 2 mL of ice cold buffer 1. Afterwards, the cells were centrifuged for 10 min at 

4 º C and 4000 g. The supernatant was discarded. The cells were resuspended in 2 mL of ice 

cold buffer 2. 100 µL of sample was poured in 1.5 mL vessel and frozen in liquid nitrogen. 

The samples were stored in -80 º C. 

3.6.7. Transformation of chemically competent cells 

 

100 µL of sample was melted on ice. 1 µL of DNA was added and incubated on ice for 20 

min. Then, it was incubated in 42 º C water bath for 30 s and left on ice for 2 min. 500 µL of 

LB medium was added and incubated on a shaker for 1 h at 37 º C. Afterwards, samples 

where centrifuged for 2 min and 7000 rpm at room temperature. 500 µL of the supernatant 

was discarded, and cells were resuspended with pipette in 100 µL of supernatant. The 

transformed cell suspension was then pipetted on LB agar plates containing kanamycin. 
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3.7.Analytical methods 

 

3.7.1. Optical density measurement 

 

During the cultivation, bacterial growth was monitored by measuring optical density 

(OD600).  Using photometer (BioPhotometar by Eppendorf AG), absorbance is measured on 

wavelength of 600 nm. To stay in linear range (0 – 0.9), samples are diluted with respective 

medium in disposable polystyrene cuvette (1.5 mL, Brand GmbH & Co. KG) prior to 

measurement. Respective medium was used as a blank.  

3.7.2. Microscopy 

 

A few drops of cell suspension were diluted on a slide and observed under BX40 light 

microscope by Olympus Corporation with magnification 200x. Sample photos were taken 

and saved using IC Capture 2.0 software by Imaging Source Europe GmbH.  

3.7.3. Enzyme activity test 

 

Acid phosphatase activity test with pNPP (para-nitrophenylphosphate) is used to quantify the 

enzyme activity in both supernatant and total enzyme activity (in cell lysate and supernatant 

together). Samples and standards are diluted in fresh 0.25 M glycine–HCl buffer, pH 2.5. 

Supernatants are diluted in a range of 1:10 to 1:400 and disrupted cell samples in a range of 

1:40 to 1:700.   

Pipetting schedule in 96-well plate is shown on Figure 3. below. 
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Figure 3. Pipetting schedule for enzyme activity test. Yellow colour stands for samples 

(pipetted in three replicates) in which substrate was added, grey colour stands for samples in 

which buffer was added instead of substrate, blue colour stands for standards and green 

colour for blank (buffer only), both pipetted in two replicates. On the right side, there are 

concentrations of standard para-nitrophenol. 

50 µL of samples and standards was pipetted in a 96-well plate and incubated in a thermostat 

in 50 ºC for exact 15 minutes as well as the substrate solution, 50 mM para-

nitrophenylphosphate (pNPP) dissolved in 0.25 M glycine–HCl buffer. After 15 minutes of 

incubation, 50 µL of substrate or buffer is added to samples and standards (see figure above). 

The reaction is stopped after 10 minutes by adding 100 µL of stop solution (1 M sodium 

carbonate) in each well, causing a change of colour from colourless to yellow. Thereafter, 

A405 was measured using software SoftMax® Pro. Absorbance value of blank (green coloured 

wells, Figure 4.) is subtracted from measured absorbance values of samples and standards. 

This step eliminates influence of buffer. To eliminate autocatalysis influence, absorbance 

value measured in grey wells (Figure 4.) is subtracted from absorbance values of respective 

samples. Enzyme activity is calculated from standard curve which correlates A405 of standards 

and concentration of product pNP. Targeted A405 measuring range was from 0.75-1.1 because 

in this narrow range, correlation of product concentration and absorbance is linear. One unit 

(U) corresponds to 1 mM of product (pNP) per minute. 

 

3.7.4. Total protein quantitation – modified Bradford’s protein assay 
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Prior to the measurement samples were diluted in H2Odd - supernatants were diluted in a 

range of 1:5 to 1:40 and cell lysate samples in a range of 1:10 to 1:300. According to the 

schedule (Figure 4.), 50 µL of each calibration standard and 50 µL of the sample dilutions 

were pipetted into the wells of a 96-well plate. Standards were pipetted in two replicates and 

samples in three technical replicates. BSA (bovine serum albumin) was used as standard. 

Roti®–Nanoquant solution (5 x) was diluted in 4 volumes of H2Odd and 200 µL of 1 x 

solution was pipetted to the standards and the samples on plate. The plate was incubated for 5 

minutes at room temperature. Thereafter, OD590 and OD450 were measured using software 

SoftMax® Pro. To calculate the protein concentration, the quotient OD590/OD450 of each 

sample was compared to the calibration curve (dependence of OD590/OD450 to protein 

concentration). 

 

Figure 4. Pipetting schedule for total protein test: orange colour stands for samples (pipetted 

in three replicates) and blue colour represents standards (pipetted in two replicates).  

3.7.5. SDS – PAGE   

 

Protein samples (prepared in 4 x Laemmli buffer followed by boiling at 96°C for 5 min) were 

separated on SDS-PAGE gels. Polyacrylamide gels are composed of a separating and a 

stacking gel (Table 10.). First, the separation gel was poured and layered with isopropanol. It 

was polymerizing for 30 min at room temperature. Thereafter, isopropanol was removed, the 

stacking gel was poured, and a comb was inserted into the layer of stacking gel solution. It 

was left for 10 min to polymerize. Afterwards, the comb was removed, the gel was placed in 

the electrophoresis apparatus and filled with 1 x electrophoresis buffer. 8 µL of pre-stained 

marker and 20 µL of prepared samples were loaded and electrophoresis was performed at the 
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current of 20 mA for the stacking gel and of 40 mA for the separation gel. Electrophoresis is 

tracked by stain migration and stopped when stain reached the bottom of the plate. Gels were 

stained in Comassie brilliant blue solution (Table 10.) and destained in water. Both staining 

and destaining was performed on orbital rocking shaker. Composition of each gel and other 

used solutions is listed in tables below. 

Table 10. Composition of polyacrylamide separating and stacking gel. 

 separating gel (12,5%) stacking gel (5%) 

H2O 1,5 mL 775 µL 

1 M Tris – HCl, pH 8,8 2,8 mL - 

0,25 M Tris – HCl, pH 6,8 - 1,25 mL 

Bis/Acrylamide (0,8%, 30%) 3,0 mL 425 µL 

5% SDS 150 µL 50 µL 

10% APS 37,5 µL 25 µL 

TEMED 2,5 µL 2,5 µL 
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Table 11. Composition of buffers and stain solution used for SDS-PAGE. 

Solution Component concentration 

4 x Laemmli buffer, pH 6,8 bromphenol blue 200 mg/L 

dithiothreitol  200 mM 

Glycerine 200 g/L 

SDS 40 g/L 

Tris-HCl 100 mM 

stain solution 80% o-phosphoric acid 2 % (v/v) 

ammonium sulphate 50 g/L 

Coomassie brilliant blue G-250 200 mg/L 

ethanol  10 % (v/v) 

Tris-glycine electrophoresis buffer, 

pH 8,3 

Glycine 192 mM 

SDS 1 g/L 

Tris 25 mM 
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4. RESULTS AND DISCUSSION 

This chapter contains results obtained during flask cultivations of two different E. coli strains 

without and with pAppA plasmid. The aim of the flask cultivation was to see how 

transformation of cells with pAppA plasmid influence the cell growth and to see how certain 

deletions of the transformed selected strains influence cell growth, protein production and 

secretion. Strains were cultivated in larger scale, i. e. in bioreactors. Each of the strains has 

also kanamycin resistance, i. e. Δkan mutation. 

4.1. FLASK CULTIVATION OF DIFFERENT E. coli STRAINS 

4.1.1. Growth behaviour and OD600 

 

Figure 5 shows the OD600 measured at nine different time points – 0h, 1h, 2h, 3h, 4h, 5h, 6h, 

7h and 8h of cultivation. 

 

Figure 5. Optical density of bacterial cultures. N = 2 x 2. 

 

At first time point (0 h) initial OD600 of both strains is 0.2. After 8 h of cultivation, strain 

E.coli ΔfhuA has reached higher OD600 with a value of 30.05 ± 0.41 than E.coli 

ΔompAompCΔfhuA strain with OD600 value of 26.58 ± 0.26 (Figure 5). The highest specific 

growth rate for the strain E.coli ΔfhuA is 0.896 h-1, while strain E.coli ΔompAompCΔfhuA has 

reached 0.693 h-1 . Generation time of the strain E.coli ΔfhuA  is 1.11 h and for the E.coli 
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ΔompAompCΔfhuA is 1.13 h. Results and errors shown in this chart are calculated from 

measurement of two biological and two technical replicates, N = 2 x 2. 

 

 

 

Figure 6. Cell dry weight of bacterial cultures. N = 2 x 3. 

In 2, 4, 6, and 8 h of cultivation, cell dry weight of strain E.coli ΔfhuA was higher than a cell 

dry weight of a strain E.coli ΔompAompCΔfhuA, which corresponds to the OD 

measurements. The highest measured cell dry weight of both strains was eighth hours of 

cultivation, with a value of 9.13 ± 0.08 g L-1 for strain E.coli ΔfhuA while for strain E.coli 

ΔompAompCΔfhuA it is 6.88 ± 0.15 g L-1 (Figure 6). Results and errors shown in this chart 

are calculated from measurement of two biological and three technical replicates, N = 2 x 3. 
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 Figure 7. Correlation of OD600 with cell dry weight for strain E.coli ΔfhuA  

For the strain E.coli ΔfhuA the equation y = 3.3081x represents the correlation of cell culture 

optical density at 600nm with cell dry weight, with the coefficient of determination of 0.9966 

(Figure 7). 

 

 

Figure 8. Correlation of OD600 with cell dry weight for strain E.coli ΔompAompCΔfhuA 

For the strain E.coli ΔompAompCΔfhuA the equation y = 3.5747x represents the correlation 

of cell culture optical density at 600nm with cell dry weight, with the coefficient of 

determination of 0.9726 (Figure 8). 
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. 

 

Figure 9. Specific growth rate and OD measurements of strain E.coli ΔfhuA 

At the first time point (0.5 h) specific growth rate of strain E.coli ΔfhuA is lower (0.96 h-1) 

than a specific growth rate (1.51 h-1) at the second time point (1.5 h) because of the 

adaptation of cells to the new media. Furthermore, at the second time point (1.5 h) cells have 

reached the highest specific growth rate (1.51 h-1) (Figure 9). Mean value of specific growth 

rate of strain E.coli ΔfhuA is 0.63 h-1. Generation time of the strain is 1.11 h.  Results of 

optical density shown in this chart are calculated from measurement of two biological and 

two technical replicates, N = 2 x 2. 
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Figure 10. Specific growth rate (µ) and OD measurements of strain E.coli 

ΔompAompCΔfhuA 

At the first time point (0.5 h) specific growth rate of strain E.coli ΔompAompCΔfhuA is lower 

(0.55 h-1) than a specific growth rate (1.38 h-1) at the second time point (1.5 h) because of the 

adaptation of cells to the new media. Furthermore, at the second time point (1.5 h) cells have 

reached the highest specific growth rate (1.38 h-1) (Figure 10). Mean value of specific growth 

rate of strain E.coli ΔompAompCΔfhuA is 0.61 h-1. Generation time of the strain is 1.13 h. 

Results of optical density shown in this chart are calculated from measurement of two 

biological and two technical replicates, N = 2 x 2. 
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4.2. FLASK CULTIVATION OF DIFFERENT E. coli TRANSFORMED STRAINS 

WITH pAppA PLASMID 

 

 

Figure 11. Optical density of bacterial cultures measured right after induction. N = 3 x 3 

 

Figure 11 shows the OD600 measured at eight different time points – 0 h (right after 

induction), 1 h (one hour after induction), 2 h (two hours after induction), 3 h ( three hours 

after induction), 4 h (four hours after induction), 5 h (five hours after induction), 6 h (six 

hours after induction), 24 h (twenty – four hours after induction). For strain E. coli ΔfhuA 

pAppA induction (0 h) of protein production with final concentration of 1 mM IPTG was at 

OD600 of 1.09 ± 0.03 and for strain E.coli ΔompAompCΔfhuA pAppA it was at OD600 of 1.02 

± 0.04. The strains E. coli ΔfhuA pAppA and E.coli ΔompAompCΔfhuA pAppA have reached 

similar OD600 both at the point of the induction and first hour after induction. Strain E.coli 

ΔompAompCΔfhuA pAppA has reached the highest OD600 of 15.29 ± 0.42 in third hour after 

induction after which OD600 has started decreasing, which indicates that cells culture have 

gone into death phase. For the strain E. coli ΔfhuA pAppA the highest measured OD600 of 

27.21 ± 0.31 was in sixth hour after induction. Twenty – four hours after induction OD600 of a 

strain E. coli ΔfhuA pAppA decreases to the value of 25.66 ± 0.60.  

Strain E. coli ΔompA ΔompC ΔfhuA pAppA grows faster with a mean value of specific growth 

rate of 0.638 h-1 (Figure 13.), while mean value of specific growth rate for strain E.coli ΔfhuA 
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pAppA is 0.635 h-1 (Figure 12). Additionally, E.coli ΔompAompCΔfhuA pAppA strain has a 

shorter generation time (1.087 h) than a strain E.coli ΔfhuA (1.091 h). 

The highest specific growth rate of a strain E.coli ΔfhuA pAppA is 0.927 h-1 and for the strain 

E.coli ΔompAompCΔfhuA pAppA it is 0.916 h-1. 

It could be that the triple knock out strain E.coli ΔompAompCΔfhuA pAppA grows faster 

because the outer membrane of the strain is more permeabilized so the velocity of substrate 

transport into the cell could be higher. On the other hand, it could be that with more 

permeabilized outer membrane, the cells are less stable because they are losing necessary 

substances out of the periplasm and therefore cells culture skipped stationary phase and went 

into death phase immediately.  

 

Influence of induction between cells which are transformed with plasmid and those which are 

not, manifests in cell culture optical density measurements and the highest specific growth 

rate. Strain E. coli ΔfhuA  pAppA  has reached lower highest measured OD600 of 27.21 ± 0.31 

in sixth hour after induction (Figure 11)  than a strain E. coli ΔfhuA after 8h of cultivation 

with a highest measured OD600 of 30.05 ± 0.41 (Figure 5). The highest specific growth rate of 

E. coli ΔfhuA is 0.896 h-1, while for E. coli ΔfhuA pAppA the highest specific growth rate is 

0.927 h-1. However, influence of induction was even greater for the strain E. coli ΔompA 

ΔompC ΔfhuA pAppA which has reached highest OD600 of 15.29 ± 0.42 in third hour after 

induction, after which cells went into death phase (Figure 11), than a strain E. coli ΔompA 

ΔompC ΔfhuA which has reached OD600 of 26.58 ± 0.26 after 8h of cultivation (Figure 5). The 

highest specific growth rate of a strain E. coli ΔompA ΔompC ΔfhuA is 0.693 h-1, while for E. 

coli ΔompA ΔompC ΔfhuA  pAppA the highest specific growth rate is 0.916 h-1. 
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Figure 12. Specific growth rate (µ) and OD measurements of strain E.coli ΔfhuA with pAppA 

plasmid. 

At the first (0.5 h) and the second (1.2 h) time points, specific growth rates of strain E.coli 

ΔfhuA pAppA are lower (0.70 h-1 and 1.10 h-1) than a highest specific growth rate (1.33 h-1) at 

third time point (1.37 h) because of the adaption of cells to the new media (Figure 12). Mean 

value of specific growth rate of strain E.coli ΔfhuA pAppA is 0.64 h-1. Generation time of the 

strain is 1.09 h. Results and errors shown in this chart for optical density, are calculated from 

measurement of three biological and three technical replicates, N = 3 x 3. 
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Figure 13. Specific growth rate (µ) and OD measurements of strain E. coli ΔompA ΔompC 

ΔfhuA with pAppA plasmid. 

The highest specific growth rate is 1.77 h-1 at 1.42 h of cultivation. After reaching the highest 

measured OD600 of 15.29 ± 0.42 at third hour after induction, cells culture went into death 

phase. Therefore, specific growth rate of the last four measurements is below 0 h-1 (Figure 

13). Mean value of specific growth rate of strain E. coli ΔompA ΔompC ΔfhuA pAppA is 0.64 

h-1. Generation time of a strain is 1.09 h. Results and errors shown in this chart for optical 

density, are calculated from measurement of three biological and three technical replicates, N 

= 3 x 3. 

By using the equation y = 3.3081x which represents the correlation of cells optical density at 

600nm with cell dry weight for the strain E.coli ΔfhuA with the coefficient of determination 

of 0.9966 (Figure 7), cell dry weight has been calculated for the strain E.coli ΔfhuA pAppA. 

Results have been shown in Table 12.  
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Table 12. Cell dry weight of a strain E.coli ΔfhuA pAppA 

Time (h) OD600 Cell dry weight (g L-1) 

0 0.2 ± 0.00 0.06 ± 0.00 

1 0.40 ± 0.01 0.12 ± 0.00 

1.7 0.87 ± 0.00 0.26 ± 0.00 

1.87 1.09 ± 0.03 0.33 ± 0.00 

2.87 3.30 ± 0.04 1.00 ± 0.01 

3.87 8.95 ± 0.25 2.70 ± 0.08 

4.87 17.11 ± 0.25 5.17 ± 0.07 

5.87 21.39 ± 0.69 6.47 ± 0.21 

6.87 24.76 ± 0.24 7.48 ± 0.07 

7.87 27.21 ± 0.31 8.23 ± 0.09 

25.87 25.66 ± 0.60 7.76 ± 0.18 

 

 

By using the equation y=3.5747x which represents the correlation of cells optical density at 

600nm with cell dry weight for the strain E.coli ΔompAompCΔfhuA with the coefficient of 

determination of 0.9726 (Figure 8), cell dry weight has been calculated for the strain E.coli 

ΔompAompCΔfhuA pAppA. Results have been shown in Table 13. 
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Table 13. Cell dry weight of a strain E.coli ΔompAompCΔfhuA pAppA 

Time (h) OD600 Cell dry weight (g L-1) 

0 0.2 ± 0.00 0.06 ± 0.00 

1 0.35 ± 0.00 0.10 ± 0.00 

1.62 0.71 ± 0.00 0.20 ± 0.00 

1.83 0.88 ± 0.00 0.25 ± 0.00 

1.92 1.02 ± 0.04 0.29 ± 0.01 

2.92 3.39 ± 0.03 0.95 ± 0.00 

3.92 9.54 ± 0.08 2.67 ± 0.02 

4.92 15.29 ± 0.42 4.28 ± 0.12 

5.92 15 ± 0.23 4.20 ± 0.06 

6.92 14.43 ± 0.12 4.04 ± 0.03 

7.92 13.84 ± 0.32 3.87 ± 0.09 

25.92 6.25 ± 1.06 1.75 ± 0.30 

 

 

4.2.2. Protein secretion 

 

Protein concentration in the supernatant was determined. Results of modified Bradford test 

described in chapter Materials and methods are shown on Figure 14 and Figure 15. 
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Figure 14. Optical density and protein concentration in supernatants of E. coli ΔfhuA 

pAppA. N = 3 x 3. 

Figure 14 shows the OD600 and protein concentration in supernatants measured at five 

different time points – 0 h (right after induction), 2 h (two hours after induction), 4 h (four 

hours after induction), 6 h (six hours after induction), 24 h (twenty – four hours after 

induction). It can be noticed that as well as OD600 increases over the time, protein 

concentration in supernatant increases too. The highest protein concentration in supernatant 

of 0.39 ± 0.01 g L-1   is reached at twenty – fourth hour after induction and it is more than 

1.5x higher than at the point of induction, which is in correlation with the decrease of OD600 

thus indicating cell lysis. 
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Figure 15. Optical density and protein concentration in supernatants of E. coli 

ΔompAompCΔfhuA pAppA.  N = 3 x 3 

Figure 15 shows the OD600 and protein concentration in supernatants measured at five 

different time points – 0 h (right after induction), 2 h (two hours after induction), 4 h (four 

hours after induction), 6 h (six hours after induction), 24 h (twenty – four hours after 

induction). With increase of OD600 protein concentration in supernatants also increases at the 

point of induction, second and fourth hour after induction. However, in sixth and twenty – 

fourth hour after induction OD600 decreases while protein concentration is supernatants 

increases presumably because of cell lysis. Because protein concentration in twenty – fourth 

hour is lower (0.35 ± 0.05 g L-1) than in sixth hour (0.53 ± 0.05 g L-1) it could indicate that 

there has been made mistake either with sampling or with the method. 
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Figure 16. Normalized protein concentration comparison in supernatant of two different E. 

coli strains. 

In Figure 16 bars represent the protein concentration in supernatants normalized to the OD600 

of the respective strains. The highest normalized protein concentration in supernatant of both 

strains can be noticed at the point of induction. This could be due to the inoculation, since it 

is possible that lysis of some cells occurred in preculture because in the starter culture, cells 

can be in dissimilar metabolic states (Huber et al., 2009; Rosano and Ceccarelli, 2014). At 

the point of induction and second hour after induction, normalized protein concentration of E. 

coli ΔfhuA pAppA is higher than E. coli ΔompAompCΔfhuA pAppA. From fourth hour after 

induction until the end of cultivation, E. coli ΔompAompCΔfhuA pAppA has higher 

normalized protein concentration. Twenty – fourth hour after induction normalized protein 

concentration of E. coli ΔompAompCΔfhuA pAppA is 3.65 times higher than E. coli ΔfhuA 

pAppA, but it is important to accentuate that OD600 of E. coli ΔompAompCΔfhuA pAppA 

started decreasing in fourth hour after induction. 
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4.2.3. Enzyme activity 

 

Table 14 contains the results of enzyme assay preformed as described in the chapter Materials 

and methods. Enzyme activity in supernatants of different strains are shown as total activity 

and as activity normalized to OD600. 

Table 14. Enzyme assay and OD600 results for tested E. coli strains 

Strain time after 

induction 

(h) 

OD600 total enzyme 

activity (U mL-1) 

in supernatant 

normalized enzyme 

activity (U mL-1 OD-1) 

in supernatant 

volumetric 

productivity 

(U mL-1 h.1) 

E. coli 

ΔfhuA 

pAppA 

2 8.95 ± 0.25  0.003 ± 0.000 - 

4 21.39 ± 0.69 0.12 ± 0.01 0.006 ± 0.001 0.050 

6 27.21 ± 0.31 0.18 ± 0.01 0.007 ± 0.001 0.040 

24 25.66 ± 0.6  0.062 ± 0.007  

E. Coli 

ΔompA 

ΔompC 

ΔfhuA 

pAppA 

0 1.02 ± 0.02  0.041 ± 0.006 - 

2 9.54 ± 0.25 0.07 ± 0.01 0.007 ± 0.002 0.013 

4 15 ± 0.59 0.90 ± 0.11 0.060 ± 0.020 0.213 

6 13.84 ± 0.36  0.144 ± 0.040  

 

 

 

 

 

 

0.02 ± 0.00 

 

1.58 ± 0.31 

 

0.071 

 

0.04 ± 0.01 

 

1.99 ± 0.24 

 

0.324  
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For the strain E. coli ΔfhuA pAppA at the point of the induction and for the strain E. coli 

ΔompA ΔompC ΔfhuA pAppA at twenty – fourth hour after induction, enzyme activity in the 

supernatant could not have been measured due to the too low product concentration. 

All measured samples of strains had too high dilutions, thus eluding the targeted A405 that has 

measuring range from 0.75 – 1.1 where correlation of product concentration and absorbance 

is linear. Because of that, these results are not reliable. Furthermore, errors are high due to 

different cell growth in each of three biological replicates. 

 As can be seen in the table above, there are differences in the enzyme activity between the 

tested strains. The highest total enzyme activity can be noticed for a strain E. coli ΔompA 

ΔompC ΔfhuA pAppA at sixth hour after induction (1.99 ± 0.24 U mL.1), while for the strain 

E. coli ΔfhuA pAppA it is at twenty - fourth hour after induction (1.58 ± 0.31 U mL.1). These 

obtained results match the protein concentration test (Figure 14 and 15). There is influence of 

triple knock out (E. coli ΔompA ΔompC ΔfhuA pAppA) compared with the single knock out 

(E. coli ΔfhuA pAppA) in the growth and in total protein concentration in supernatants 

(Figure 10 and Figure 11) while the total enzyme activity in supernatants of both strains is 

quite similar which could mean that there is not more enzyme in the periplasm.  Similar total 

enzyme activity in supernatants in both strains shows that there is similar amount of enzyme 

in supernatants and that knock out system for this specific enzyme might not limit the 

secretion. Because the same amount of enzyme is produced, the amount of the enzyme is not 

high enough to see the difference in secretion and hence triple knock out does not show better 

secretion performance.  

Higher volumetric productivity has been obtained for strain E. coli ΔompA ΔompC ΔfhuA 

pAppA at sixth hour after induction (0.324 U mL-1 h-1) compared with the strain E. coli ΔfhuA 

pAppA at twenty  - fourth hour after induction (0.071 U mL-1 h-1). Since the total enzyme 

activity in supernatants of both strains is quite similar, none of the strains does not show 

better secretion performance hence higher volumetric productivity is due to higher growth 

rate of a strain E. coli ΔompA ΔompC ΔfhuA pAppA (Figure 13) compared with growth rate 

of a strain E. coli ΔfhuA pAppA (Figure 12). Because of higher growth rate, the enzyme is 

secreted earlier and therefore E. coli ΔompA ΔompC ΔfhuA pAppA shows higher volumetric 

productivity.  
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Figure 17. Normalized activity comparison in supernatants of two different E. coli strains. 

N= 3 x 3 

 The OD600 must also be considered for further assessment of strains. The lower the cell 

density, the lower is the number of cells that potentially secrete. The activity must therefore 

be normalized to the OD600. This is shown in Table 14 and Figure 17. The bars represent the 

activity of phytase normalized to the OD600 of respective strain. Two hours after induction 

higher normalized activity of supernatant is noticed for strain E. coli ΔompA ΔompC ΔfhuA 

pAppA  (0.007 ± 0.002 U mL-1 OD-1) than for strain E. coli ΔfhuA pAppA (0.003 ± 0.000 U 

mL-1 OD-1). Fourth and sixth hour after induction, the strain E. coli ΔompA ΔompC ΔfhuA 

pAppA has higher normalized activity of supernatant than E. coli ΔfhuA pAppA, but it is 

important to accentuate that strain E. coli ΔompA ΔompC ΔfhuA pAppA showed  lower cell 

growth (Table 14). 
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4.2.3. SDS – PAGE 

 

The following figures 18 – 26 are showing SDS-PAGE gels of supernatant and total cell 

culture of the tested strains at five measuring time points: 0 h, 2 h, 4 h, 6 h and 24 h. MW of 

phytase is expected to be around 45 kDa. 

 

Figure 18. SDS-PAGE, E. coli ΔfhuA pAppA. 1, 2 and 3 represent the number of flasks. 0h, 

2h and 4h stand for time after induction samples were taken at. SN stands for supernatant. 

Red box shows phytase band. 

 

Figure 19. SDS-PAGE, E. coli ΔfhuA pAppA. 1, 2 and 3 represent the number of flasks. 6h 

and 24h stand for time after induction samples were taken at. SN stands for supernatant. Red 

box shows phytase band. 
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Figure 20. SDS-PAGE, E. coli ΔfhuA pAppA. 1, 2 and 3 represent the number of flasks. 0h, 

2h and 4h stand for time after induction samples were taken at. S stands for cell lysate and 

supernatant  sample together. Red box shows phytase band. 

 

 

 

Figure 21. SDS-PAGE, E. coli ΔfhuA pAppA. 1, 2 and 3 represent the number of flasks. 6h 

and 24h stand for time after induction samples were taken at. S stands for cell lysate and 

supernatant sample together. Red box shows phytase band. 

 



52 
 

 

Figure 22. SDS-PAGE, E. coli ΔompA ΔompC ΔfhuA pAppA. 1, 2 and 3 represent the 

number of flasks. 0h, 2h and 4h stand for time after induction samples were taken at. SN 

stands for supernatant. Red box shows phytase band. 

 

 

Figure 23. SDS-PAGE, E. coli ΔompA ΔompC ΔfhuA pAppA. 1, 2 and 3 represent the 

number of flasks. 6h stand for time after induction samples were taken at. SN stands for 

supernatant. Red box shows phytase band. 
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Figure 24. SDS-PAGE, E. coli ΔompA ΔompC ΔfhuA pAppA. 1, 2 and 3 represent the 

number of flasks. 24h stand for time after induction samples were taken at. SN stands for 

supernatant. Red box shows phytase band. 

 

Figure 25. SDS-PAGE, E. coli ΔompA ΔompC ΔfhuA pAppA. 1, 2 and 3 represent the 

number of flasks. 0h and 2h stand for time after induction samples were taken at. S stands for 

cell lysate and supernatant sample together. Red box shows phytase band. 
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Figure 26. SDS-PAGE, E. coli ΔompA ΔompC ΔfhuA pAppA. 1, 2 and 3 represent the 

number of flasks. 4h, 6h and 24h stand for time after induction samples were taken at. S 

stands for cell lysate and supernatant sample together. Red box shows phytase band. 

 

 

SDS – PAGE is used as a confirmation that there is secreted target protein in the nutrient 

medium and it can provide information whether there is a contamination with other proteins. 

An increased permeability of the cell wall is supposed to increase the secretion of the target 

protein, but it also enhances release of the other periplasmic proteins to the nutrient medium 

thus leading to contamination. With the signal sequence being cleaved, protein AppA has 

molecular weight of approximately 45 kDa (Dassa et al., 1980). 

In supernatant samples of strain E. coli ΔfhuA pAppA phytase band cannot be seen in almost 

all samples, except in sample taken at twenty – four hour where it is barely visible (Figure 18 

and Figure 19) what matches with the highest obtained result of protein concentration test and 

enzyme activity test for the respective sample (Figure 14 and Table 14). The absence of the 

phytase band, MW of 45 kDa, in supernatant sample of this strain might be due to too small 

total amount of produced protein. Phytase band can be seen in all cell lysate samples of the 

reference strain, whereas numerous proteins stained in the gel. In the second and fourth hour 

after induction band is more distinct, as well as in sixth and twenty – fourth hour after 

induction (Figure 20 and Figure 21). It can be interpreted as this strain is having a good 

phytase production ability, but poor protein secretion ability. 
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In supernatants of strain E. coli ΔompA ΔompC ΔfhuA pAppA phytase band cannot be seen in 

at the point of induction, second and fourth hour after induction (Figure 22), while it can be 

clearly seen in sixth (Figure 23) and twenty – fourth hour after induction (Figure 24). Band is 

more distinct in supernatant sample taken at sixth rather than twenty – fourth hour, what 

supports result of protein concentration test (Figure 15) and enzyme assay (Table 14) since 

enzyme activity of supernatant sample taken at twenty – fourth hour could not be measured 

due to the too low product concentration. In cell lysate, phytase band is not visibly at the 

point of induction (Figure 25) but visibility of the phytase band on SDS-PAGE increases over 

the time (Figure 26). However, it can be noticed that phytase band is less visible at twenty – 

fourth hour after induction due to the decrease of optical density. 
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4.3. BIOREACTOR CULTIVATION 

4.3.1. Bioreactor cultivation of Escherichia coli ΔfhuA pAppA 

 

E. coli ΔfhuA pAppA was cultivated in 5 L bioreactor in TB medium under conditions 

described before in chapter Batch cultivation. Samples for measuring enzyme activity and 

determining protein concentration as well as for SDS-PAGE were taken 0, 2, 4, 6, 8, 12, 16, 

20 and 24 hours after induction. Enzyme activity and protein concentration were determined 

in supernatant and in cell lysate.  

 

Figure 27. Growth curve of E. coli ΔfhuA pAppA. Moment of induction was at 1.55 h. N = 1 

x 3. 
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Figure 28. Parameters of cultivation of E. coli ΔfhuA pAppA. 

 

Figure 29. Specific growth rate (µ) and OD measurements of strain E.coli ΔfhuA pAppA 

 

By using the equation y = 3.3081x which represents the correlation of cells optical density at 

600nm with cell dry weight for the strain E.coli ΔfhuA with the coefficient of determination 

of 0.9966 (Figure 7), cell dry weight has been calculated for the strain E.coli ΔfhuA pAppA. 

Results have been shown in Table 15. 

Table 15. Cell dry weight of a strain E.coli ΔfhuA pAppA 
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Time (h) OD600 Cell dry weight (g L.1) 

0.07 0.48 ± 0.01 0.15 ± 0.00 

1.07 0.66 ± 0.00 0.20 ± 0.00 

1.35 0.88 ± 0.01 0.27 ± 0.00 

1.55 1.06 ± 0.09 0.32 ± 0.03 

2.55 2.63 ± 0.10 0.79 ± 0.03 

3.55 6.21 ± 0.03 1.88 ± 0.01 

4.55 13.53 ± 0.30 4.09 ± 0.09 

5.55 21.97 ± 0.40 6.64 ± 0.12 

6.55 24 ± 0.87 7.25 ± 0.26 

7.55 28.77 ± 0.59 8.70 ± 0.18 

9.55 34 ± 0.79 10.28 ± 0.24 

11.55 37.23 ± 0.80 11.26 ± 0.24 

13.55 38.63 ± 0.35 11.68 ± 0.11 

15.55 41.03 ± 0.96 12.40 ± 0.29 

17.55 41.27 ± 0.51 12.47 ± 0.16 

19.55 39.9 ± 0.92 12.06 ± 0.28 

21.55 39.8 ± 0.7 12.03 ± 0.21 

23.55 39.4 ± 0.2 11.91 ± 0.06 

25.55 39.8 ± 0.17 12.03 ± 0.05 

 

 

Figure 27 shows bacterial growth curve of strain E. coli ΔfhuA pAppA monitored by 

measuring OD600 value. OD600 was measured for 24 hours of cultivation after induction when 

IPTG was added (OD600 = 1.06 ± 0.09 at 1.55 h). After reaching maximal OD600 value of 

41.27 ± 0.51 in sixteenth hour after induction, cells enter stationary phase, remaining OD600 
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value about 40. Percentage of pO2 and agitator speed during the cultivation are shown in 

Figure 23. 

Dissolved oxygen level rapidly drops in first hours of cultivation (Figure 28) and prior to 

induction reaches 30 %. Dissolved oxygen level was kept at 30 % of air saturation by 

controlling the cascading impeller speed. However, percentage of pO2 can be followed 

through two peaks around 9 and 15 h where cells have reached the maximal OD600 value.  

Stirrer speed was up to 950 rpm while cells were in exponential phase. Other cultivation 

parameters; pH, temperature and overpressure, were kept constant and therefore they are not 

shown in the charts. Mean value of specific growth rate for strain E. coli ΔfhuA pAppA was 

0.32 h-1, while generation time was 2.18 h (Figure 29). Maximum specific growth rate was 

0.715 h-1. Cell dry weight was up to 12.47 ± 0.16 g L-1 at sixteenth hour after induction. 

 

4.3.2. Bioreactor cultivation of Escherichia coli ΔompAompCΔfhuA pAppA 

 

E. coli ΔompAompCΔfhuA pAppA was cultivated in 5 L bioreactor in TB medium under 

conditions described before in chapter Batch cultivation. Samples for measuring enzyme 

activity and determining protein concentration as well as for SDS-page were taken 0, 2, 4, 6, 

8, 12, 16, 20 and 24 hours after induction. Enzyme activity and protein concentration were 

determined in supernatant and in cell lysate. 
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Figure 30. Growth curve of E. coli ΔompAompCΔfhuA pAppA. Moment of induction was at 

2.07 h. N = 1 x 3. 

 

 

 

 

Figure 31. Parameters of cultivation of E. coli ΔompAompCΔfhuA pAppA 

 

 

0

20

40

60

80

100

120

140

160

180

200

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30

p
O

2
(%

)

ag
it

at
o

r 
(r

p
m

)

time (h)

agitator pO2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30

Sp
ec

. g
ro

w
th

 r
at

e 
(h

-1
)

O
D

6
0

0

time (h)

OD

μ



61 
 

Figure 32. Specific growth rate (µ) and OD measurements of strain E. coli 

ΔompAompCΔfhuA pAppA 

By using the equation y=3.5747x which represents the correlation of cells optical density at 

600nm with cell dry weight for the strain E.coli ΔompAompCΔfhuA with the coefficient of 

determination of 0.9726 (Figure 8), cell dry weight has been calculated for the strain E.coli 

ΔompAompCΔfhuA pAppA. Results have been shown in Table 16. 

Table 16. Cell dry weight of a strain E.coli ΔompAompCΔfhuA pAppA 

Time (h) OD600 Cell dry weight (g L-1) 

0 0.23 ± 0.01 0.06 ± 0.00 

1 0.37 ± 0.01 0.10 ± 0.00 

1.75 0.77 ±0.01 0.21 ± 0.00 

2.07 1.26 ± 0.11 0.35 ± 0.03 

3.07 3.97 ± 0.10 1.11 ± 0.03 

4.07 9.03 ± 0.12 2.53 ± 0.03 

5.07 23.77 ± 0.2 6.65 ± 0.06 

6.07 28.67 ± 0.21 8.02 ± 0.06 

7.07 35.97 ± 0.47 10.06 ± 0.13 

8.07 36.47 ± 0.81 10.20 ± 0.23 

10.07 35.97 ± 0.91 10.06 ± 0.26 

12.07 34.47 ± 0.40 9.64 ± 0.11 

14.07 33.27 ± 0.06 9.31 ± 0.02 

16.07 31.8 ± 0.7 8.90 ± 0.20 

18.07 29.7 ± 0.46 8.31 ± 0.13 

20.07 28.97 ± 0.06 8.10 ± 0.02 

22.07 28.37 ± 0.93 7.94 ± 0.26 

24.07 28.47 ± 0.32 7.96 ± 0.09 
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26.07 28.17 ± 0.12 7.88 ± 0.03 

 

 

Figure 30 shows bacterial growth curve of strain E. coli ΔompAompCΔfhuA pAppA 

monitored by measuring OD600 value. OD600 was measured for 24 hours of cultivation after 

induction when IPTG was added (OD600 = 1.26 ± 0.11 at 2.07 h). After reaching maximal 

OD600 value of 36.47 ± 0.81 in sixth hour after induction, cells enter death phase until 20.07 h 

of cultivation after which density of the cells remains constant until the end of cultivation 

(OD600 value about 28.5). Figure 31 shows percentage of pO2 and agitator speed during the 

cultivation of E. coli ΔompAompCΔfhuA pAppA. Dissolved oxygen level was kept at 30 % of 

air saturation by controlling the cascading impeller speed. Dissolved oxygen level rapidly 

drops in first hours of cultivation and prior to induction reaches 30 %. 

It can be noticed that the highest agitator speed (1067 rpm) was right before cells have 

reached maximal density. It may be that due to shear stress, on which cells are sensitive due 

to the weakened cell wall, cells skipped stationary phase and entered death phase 

immediately.  

Mean value of specific growth rate of strain E. coli ΔompAompCΔfhuA pAppA was 0.35 h-1, 

while generation time was 2 h. Cell dry weight was up to 10.20 ± 0.23 g L-1 in sixth hour 

after induction. Maximal specific growth rate was 0.895 h-1. 

4.3.3. Protein concentration assay 

 

Time points refer to the time after induction point. Results of the protein concentration in cell 

lysate are now shown. 
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Figure 33. Optical density and protein concentration in supernatant of E.coli ΔfhuA pAppA. 

Figure 33 shows protein concentration measured in supernatants and OD600 of strain E.coli 

ΔfhuA pAppA. Protein concentration in supernatant increases over time what matches the 

OD600. However, opposite of expectations, in eighth and twelfth hour after induction, protein 

concentration is quite similar (0.41 ± 0.02 g L-1 and 0.40 ± 0.02 g L-1), as well as in twentieth 

and twenty- fourth hour (0.71 ± 0.03 g L-1 and 0.71 ± 0.01 g L-1).  Protein concentration in 

supernatant of strain E.coli ΔfhuA pAppA reaches maximal value of 0.71 ± 0.01 g L-1 twenty 

four hours after induction and it is almost five times more than at the point of induction. 
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Figure 34. Optical density and protein concentration in supernatant of E. coli 

ΔompAompCΔfhuA pAppA 

Figure 34 shows protein concentration measured in supernatants and OD600 of strain E. coli 

ΔompAompCΔfhuA pAppA. Opposite of expectations, from eight hour until twenty – fourth 

hour after induction optical density of culture decreases while protein concentration in 

supernatants increases. Since the protein concentration in sixteenth hour is lower (0.48 ± 0.03 

g L-1) than in twelfth hour (0.53 ± 0.08 g L-1) while in twentieth and twenty – fourth hour 

after induction it is still increasing, it could be that there were some problems either with 

pipetting or sampling. Protein concentration in fourth hour after induction is higher (0.39 ± 

0.01 g L-1) than in sixth hour (0.29 ± 0.02 g L-1) while OD600 is still increasing, thus 

indicating possible problems with pipetting or sampling. Intriguingly, results obtained in E. 

coli ΔompAompCΔfhuA pAppA cultivation in flasks (Figure 15) show as well decrease of 

optical desnity while protein concentration is increasing and this could be due to the cell 

lysis.  
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Figure 35. Normalized protein concentration comparison in supernatant of two different E. 

coli strains 

The bars represent the protein concentration in supernatants normalized to the OD600 of the 

respective strains. The highest normalized protein concentration in supernatant of both strains 

can be noticed at the point of induction. This could be due to the inoculation, since it is 

possible that lysis of some cells occurred in preculture. At the point of induction, normalized 

protein concentration of strain E.coli ΔfhuA pAppA is two times higher than the normalized 

protein concentration of strain E. coli ΔompAompCΔfhuA pAppA. Normalized protein 

concentration of E.coli ΔfhuA pAppA is higher than E. coli ΔompAompCΔfhuA pAppA also in 

second, fourth, and sixth hour after induction. Eighth hour after induction, the situation is 

changing in for the benefit of E. coli ΔompAompCΔfhuA pAppA compared to normalized 

protein concentration of E.coli ΔfhuA pAppA, but it is important to accentuate that optical 

density of E. coli ΔompAompCΔfhuA pAppA started decreasing in eighth hour of induction. 

 

4.3.4. Enzyme assay results 

 

Table 17 shows enzyme assay results and OD600 results for strains cultivated in bioreactor. 

Table 18 shows volumetric productivity of strains cultivated in bioreactor. 

Table 17. Enzyme assay and OD600 results obtained during bioreactor cultivation 
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Strain Time 

after 

induction 

(h) 

OD600 Total enzyme activity (U mL-1) Normalized enzyme 

activity (U mL-1) 

supernatant cell lysate supernatant cell lysate 

E. coli 

ΔfhuA 

pAppA 

0 1.06 ± 0.09 - - - - 

2 6.21 ± 0.03 -  - 0.143 

4 21.97 ± 

0.40  2.92 ± 0.06 0.055 0.133 

6 28.77 ± 

0.59 3.01 ± 0.08 3.64 ±0.08 0.104 0.127 

8 34.00 ± 

0.79 2.34 ± 0.07 6.48 ± 0.29 0.069 0.190 

12 38.63 ± 

0.35 4.21 ± 0.05 8.01 ± 0.26 0.109 0.207 

16 41.27 ± 

0.51 8.97 ± 0.32 8.90 ± 0.68 0.217 0.216 

20 39.80 ± 

0.70  9.40 ± 0.63 0.301 0.236 

24 39.80 ± 

0.17 7.74 ± 0.18  0.194 0.257 

E. Coli 

ΔompA 

ΔompC 

ΔfhuA 

pAppA 

0 1.26 ± 0.11 - - - - 

2 9.03 ± 0.12   0.024 0.059 

4 28.67 ± 

0.21 1.57 ± 0.30 3.84 ± 0.20 0.055 0.134 

6 36.47 ± 

0.81 2.06 ± 0.18 4.23 ± 0.25 0.057 0.116 

8 35.97 ± 

0.91 1.82 ± 0.08 6.19 ± 0.31 0.051 0.172 

12 
33.27 ± 

2.39 ± 0.08 7.47 ± 0.34 0.072 0.224 

0.89 ± 0.08 

 

1.22 ± 0.02  

 

11.98 ± 0.40 

 

10.24 ± 0.92 

 

0.22 ± 0.01 

 

0.53 ± 0.03 
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0.06 

16 29.70 ± 

0.46 2.39 ± 0.05 6.26 ± 0.15 0.080 0.211 

20 28.37 ± 

0.93 4.63 ± 0.23  0.163 0.270 

24 28.17 ± 

0.12  5.58 ± 0.33 0.199 0.198 

 

 

 

Table 18. Volumetric productivity of strains cultivated in bioreactor 

Strain Time after induction 

(h) 

Volumetric productivity (U mL-1 h.1) 

supernatant cell lysate 

E. coli ΔfhuA pAppA 4 -  

6  0.687 

8 0.282  

12 0.374 0.712 

16 0.646 0.572 

20  0.473 

24 0.326 0.425 

E. Coli ΔompA ΔompC 

ΔfhuA pAppA 

4   

6 0.461 0.925 

8 0.267 0.942 

12 0.217 0.693 

16 0.155 0.409 

20 0.245 0.395 

7.65 ± 0.16 

 

5.61 ± 0.27 

 

1.015 

 0.895 

 0.931 

 

0.673 

 

0.676 

 

1.654 
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24 0.245 0.229 

 

 

Figure 36. Normalized phytase activity in supernatants of E. coli strains ΔfhuA pAppA and 

ΔompA ΔompC ΔfhuA pAppA cultivated in bioreactor. Time points are for time after 

induction. 

 

For the strain E. coli ΔfhuA pAppA enzyme activity in the supernatants at the point of 

induction and second hour after induction as well as in cell lysate at the point of induction 

could not have been measured due to the too low product concentration. For the strain E. coli 

ΔompA ΔompC ΔfhuA pAppA enzyme activity in the supernatant at the point of induction as 

well as in cell lysate at the point of induction could not have been measured as well, due to 

the too low product concentration. It is hard to compare results of enzyme assay during flask 

cultivation to those obtained during bioreactor cultivation because samples from flask 

cultivation had too high dilutions,  thus eluding the targeted A405 that has measuring range 

from 0.75 – 1.1 where correlation of product concentration and absorbance is linear.  

High dilutions of samples affect error values. Although each enzyme activity test is 

performed the same way, another problem is that the substrate solution is very sensitive to 

temperature leading to higher readings of absorbance if substrate is not well tempered. 

Because all of that, there are multiple criteria when it comes to decision which strain shows 

the best secretion ability. 
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In supernatant of strain E. coli ΔfhuA pAppA, phytase activity increases in sixth hour after 

induction, after which it decreases in eighth hour after induction. Then, activity increases 

again and reaches maximal value of 11.98 ± 0.4 U mL-1 twenty hours after induction. High 

enzyme activity in supernatant indicates high protein secretion. Twenty – four hours after 

induction, phytase activity in supernatant decreases again.  

Phytase activity in cell lysate increases over time and reaches maximal value of 10.24 ± 0.92 

U mL-1 twenty – four hours after induction and it is 11.5x higher than in second hour after 

induction (Table 17). It is unlikely that maximal value of phytase activity in supernatant of 

the strain E. coli ΔfhuA pAppA is higher than in cell lysate. It could be that with disruption of 

cells, samples got overheated causing denaturation of some AppA, thus AppA lost part of its 

total activity. 

For the strain E. coli ΔompA ΔompC ΔfhuA pAppA phytase activity in supernatant reaches 

maximum value of 5.61 ± 0.27 U mL-1 twenty - four hours after induction. It reaches value 

more than five times higher than in second hour after induction, suggesting that prolonged 

time of cultivation increases excreted protein concentration in nutrient medium. It also fits the 

results of protein concentration in supernatants (Figure 34). Phytase activity in cell lysate had 

the highest value of 7.65 ± 0.16 U mL-1 twenty hours after induction. Compared to the 

activity in supernatant of strain E. coli ΔompA ΔompC ΔfhuA pAppA, total activity in 

supernatant of strain E. coli ΔfhuA pAppA is 3.75 x higher in the sixteenth hour after 

induction. 

If OD600 is also included as an important factor of characterization of protein secretion, 

normalized activity results show that E. coli ΔfhuA pAppA remains better secreting (Figure 

36) and producing strain (Table 17) because E. coli ΔfhuA pAppA reaches up to 2.71 x higher 

normalized activity in supernatant and 2.42 x higher normalized activity in cell lysate than 

the E. coli ΔompA ΔompC ΔfhuA pAppA. 

Volumetric productivity of strain E. coli ΔfhuA pAppA has two maximum values both in 

supernatant and in cell lysate, while on the other hand strain E. coli ΔompA ΔompC ΔfhuA 

pApp has one maximum value both in supernatant and in cell lysate (Table 18). Second 

maximum value of volumetric productivity of strain E. coli ΔfhuA pAppA is a consequence of 

better cultivation conditions in bioreactor, hence the growth of a strain is more stable even 

with the smaller growth rate compared to the flask cultivation of strain. The lower robustness 
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of strain E. coli ΔompA ΔompC ΔfhuA pAppA compared to strain E. coli ΔfhuA pAppA, has a 

great impact on cell cultivation in bioreactor, which is why cells skipped stationary phase and 

entered death phase immediately. Since the robustness of cell influences growth, growth rate 

and OD600, there is also influence in the volumetric productivity. 
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4.3.5. SDS – PAGE 

 

 

Figure 37. SDS-PAGE, E.coli ΔfhuA pAppA. 0h, 2h, 4h, 6h, 8h, 12h, 16h, 20h and 24h stand 

for time after induction samples were taken at. SN stands for supernatant. Red box shows 

phytase band. 

 

 

Figure 38. SDS-PAGE, E.coli ΔfhuA pAppA. 0h, 2h, 4h, 6h, 8h, 12h, 16h, 20h and 24h stand 

for time after induction samples were taken at. C stands for cell lysate. Red box shows 

phytase band. 
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Figure 39. SDS-PAGE, E. coli ΔompAompCΔfhuA pAppA. 0h, 2h, 4h, 6h, 8h, 12h, 16h, 20h 

and 24h stand for time after induction samples were taken at. SN stands for supernatant. Red 

box shows phytase band. 

 

 

Figure 40. SDS-PAGE, E. coli ΔompAompCΔfhuA pAppA. 0h, 2h, 4h, 6h, 8h, 12h, 16h, 20h 

and 24h stand for time after induction samples were taken at. C stands for cell lysate. Red 

box shows phytase band. 

 

 

In supernatant samples of strain E.coli ΔfhuA pAppA phytase band on SDS-PAGE gel is not 

visible at the point of the induction, at second hour after induction it is barely visible and in 

fourth, sixth and eighth hour it is more visible (Figure 37). For the following measuring 

points it is not visible at all, which does not support results of protein concentration test nor 
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activity test. Furthermore, it does not match with the SDS-PAGE of the respective strain 

cultivated in flasks. This result can be a consequence of error that occurred during sample 

preparation. Because all of that, the experiment should be repeated. 

 For cell lysate of the reference strain, phytase band could not be seen at the point of the 

induction, but visibility of phytase band increases over the time in following measuring 

points (Figure 38) what matches the enzyme assay results where activity of cell lysate is 

increasing (Table 17). 

For samples of protein in supernatants of strain E. coli ΔompAompCΔfhuA pAppA, phytase 

band is not visible at the point of induction, while in following measuring points phytase 

bands become stronger over the time of cultivation (Figure 39) what supports protein 

concentration test (Figure 34) and activity assay (Table 17) . For the cell lysate samples of the 

reference strain, there is no phytase band both at the point of induction and second hour, and 

in following measuring points phytase bands become stronger over the time of cultivation 

(Figure 40) what matches with the increasing enzyme activity (Table 17). 
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5. CONCLUSION AND OUTLOOK 

To investigate whether the increased permeability is sufficient to allow secretion of 

recombinant proteins to an extracellular environment, one single and one triple knock-out 

mutants of Escherichia coli were characterized. Single knock-out ΔfhuA pAppA and triple 

knock-out ΔompAompCΔfhuA pAppA were constructed in Laboratory of Fermentation 

technology and hoped to have increased secretion ability. Firstly, ΔfhuA and 

ΔompAompCΔfhuA were cultivated in flasks to have an overview of growth features of both 

strains. Secondly, ΔfhuA and ΔompAompCΔfhuA were transformed with plasmid pAppA and 

phytase AppA was used as a reporter protein. Flask cultivation was carried out to have an 

overview of features, in terms of growth, protein secretion and enzyme activity. Thirdly, both 

strains were cultivated in bioreactors over a period of twenty-four hours after induction, again 

with the aim to characterize them regarding growth, protein secretion and enzyme activity. 

1. During the flask cultivation strains ΔfhuA and ΔompAompCΔfhuA were cultivated. 

Strain ΔfhuA has reached higher maximal measured optical density (30.05±0.41) than 

ΔompAompCΔfhuA (26.58±0.26). Both strains were transformed with plasmid pAppA 

and cultivated in flasks where once again strain ΔfhuA pAppA has reached higher 

maximal measured optical density (27.21±0.31) than ΔompAompCΔfhuA pAppA 

(15.29±0.42). Extracellular protein concentration was higher for ΔompAompCΔfhuA 

pAppA (0.53±0.05 g L-1) than ΔfhuA pAppA (0.39±0.01 g L-1) but it is important to 

accentuate that high protein concentration in supernatant indicate a good secretion 

ability of different periplasmic proteins, but also, it can mean cell lysis. The enzyme 

activity assay results are not reliable as all measured samples of strains had too high 

dilutions thus eluding a narrow range of linear dependency of absorbance and 

concentration. Therefore, the enzyme activity assay should be repeated for flask 

cultivation. 

2. Both strains, ΔfhuA pAppA and ΔompAompCΔfhuA pAppA, were cultivated in 

bioreactors. Further assessment showed that strain ΔompAompCΔfhuA pAppA is more 

sensitive to shear stress in bioreactor than ΔfhuA pAppA, presumably due to lower 

robustness of the cells caused by weakened cell wall structure since genes encoding 

for outer membrane proteins have been deleted. ΔompAompCΔfhuA pAppA has 

remained a strain with higher obtained extracellular protein concentration (0.84±0.30 
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g L-1) than ΔfhuA pAppA (0.71 ± 0.01 g L-1). The enzyme activity assay has shown 

that ΔfhuA pAppA is a better secreting and producing strain. 
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7. APPENDIX 

1. Bioreactors specifications 

Bioreactor model Bioengineering NLF 3 

Process control BioSCADA Bioengineering 

Total volume 7 L 

Reactor diameter (D) 155 mm 

Reactor height (H) 360 mm 

Impeller diameter (d) 60 mm 

Impeller blade width (a) 21 mm 

Impeller blade height (b) 16 mm 

Blade diameter (c)  30 mm 

Number of blades 6 

Number of stirrer levels 3 

Blade bottom and bioreactor 

bottom distance 
70 mm 

Distance between two 

stirrers (k)  
122 mm 

Distance between the 2nd 

stirrer and bioreactor bottom 
ca. 65 mm 

Stirrer blade and air opening  ca.60 mm 

Stirring shafts diameter 12 mm 

Number of baffles 4 

Baffle height (g) 326 mm 

Baffle width (e) 15 mm 

Baffle and bioreactor wall 

distance (f) 
3 mm 

Baffle and bioreactor bottom 

distance (h) 
0 mm 
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2. NLF 3 (7 L) bioreactor system scheme 
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