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EXTENDED SUMMARY 

Saprolegnia parasitica, the causative agent of saprolegniosis in salmonids, and Aphanomyces 

astaci, the causative agent of crayfish plague, are oomycete pathogens that cause significant 

economic losses in aquaculture. Since chemicals harmful to humans and the environment are 

used for their prevention and control in aquaculture, new environmentally friendly methods 

need to be developed. In this context, the essential oils of Mediterranean wild plants sage, bay 

laurel and rosemary, as well as propolis formulations, are rich in bioactive components and 

have a number of beneficial properties. Although their inhibitory activity against a wide range 

of microbes has already been demonstrated, their inhibitory potential against oomycetes has 

been much less studied. 

The objectives of this dissertation were: (i) to determine the optimal conditions for the isolation 

of the essential oils of Mediterranean wild plants sage, bay laurel and rosemary, in order to 

increase the yield, (ii) to determine the chemical composition of the essential oils and fluid 

propolis formulations, and (iii) to determine the inhibitory potential of the essential oils and 

propolis formulations against the mycelial growth and zoospores of the pathogenic oomycetes 

S. parasitica and A. astaci. 

Since one of the main obstacles to the mass application of essential oils in aquaculture is the 

high production cost, the application of different hydrodistillation pretreatments was tested to 

increase the essential oil yield. Ultrasonic pretreatment and pretreatment by classical reflux 

extraction, as environmentally friendly and economically justifiable approaches, resulted in a 

significant increase in essential oil yield by 40 – 64%, while the chemical composition 

remained largely unchanged, as confirmed by statistical analysis of gas chromatography-mass 

spectrometry (GC-MS) results. In contrast, pretreatment by classical reflux extraction with the 

addition of cell wall-degrading enzymes did not significantly increase the yield of essential 

oils. 

Next, GC-MS and ultra-performance liquid chromatography combined with tandem mass 

spectrometry (UPLC/MS-MS) showed that the essential oils and fluid propolis preparations 

were rich in bioactive components. Their inhibitory potential against the life stages of model 

pathogenic oomycetes was analysed in vitro, and EC50 values (concentrations of tested samples 

leading to 50% inhibition) of mycelial growth and germination of zoospores, as well as MIC 

values (minimum inhibitory concentrations) of zoospore motility were determined. The 

binding of selected components of propolis, i.e., chrysin, pinocembrin, cinnamic acid and 



apigenin, to oomycete proteins that play a role in pathogenesis was simulated using the 

molecular docking method. All tested samples had strong inhibitory activity, but it depended 

on the type of tested sample, oomycete species and life cycle stage (mycelium or zoospores). 

Propolis samples showed the strongest inhibitory effect on the growth of the mycelium of A. 

astaci, while sage essential oil most strongly inhibited the zoospores and mycelium of S. 

parasitica and the zoospores of A. astaci. Despite the fact that the results point to some 

molecules as the basis of the inhibitory effect, such as camphor in sage and chrysin in propolis, 

the demonstrated inhibitory effect is most likely due to the synergy of a number of bioactive 

components present at low concentrations. 

Based on all the above, the results of this dissertation represent the first step in the development 

of the use of essential oils and propolis to control oomycete diseases in aquaculture. 

  



PROŠIRENI SAŽETAK 

Saprolegnia parasitica, uzročnik saprolegnioze kod salmonidnih riba, i Aphanomyces astaci, 

uzročnik račje kuge, oomicetni su patogeni koji uzrokuju značajne ekonomske gubitke u 

slatkovodnoj akvakulturi. Budući da se za njihovu prevenciju i suzbijanje koriste kemikalije 

štetne za ljude i okoliš, potrebno je razviti nove, ekološki prihvatljve metode kontrole patogenih 

oomiceta u akvakulturi. U tom kontekstu, eterična ulja samoniklog mediteranskog bilja, 

kadulje, lovora i ružmarina, kao i pripravci propolisa, bogati su bioaktivnim komponentama s 

brojnim pozitivnim svojstvima. Iako je utvrđeno da djeluju inhibicijski prema mnogim 

mikrobima, njihova inhibicijska aktivnost prema oomicetima je slabo istražena.  

Ciljevi ovoga doktorskog rada bili su: (i) odrediti optimalne uvjete izolacije eteričnih ulja 

samoniklog mediteranskog bilja, kadulje, lovora i ružmarina, s ciljem povećanja prinosa, (ii) 

odrediti kemijski sastav eteričnih ulja i tekućih pripravaka propolisa, i (iii) odrediti inhibicijski 

potencijal eteričnih ulja i pripravaka propolisa na rast micelija te pokretljivost i klijavost 

zoospora patogenih oomiceta S. parasitica i A. astaci.  

S obzirom da je jedna od glavnih prepreka masovnog korištenja eteričnih ulja u akvakulturi 

visoka cijena njihove proizvodnje, u ovom je radu testirana primjena različitih predtretmana 

hidrodestilaciji s ciljem povećanja prinosa ulja. Predtretman ultrazvučnom sondom i 

predtretman klasičnom ekstrakcijom uz refluks, kao okolišno i ekonomski prihvatljivi pristupi, 

uzrokovali su značajno povećanje prinosa eteričnog ulja od 40  64 %, pri čemu je kemijski 

sastav bio većinom nepromijenjen, što je potvrđeno statističkim analizama rezultata plinske 

kromatografije s masenom spektrometrijom (engl. gas chromatography – mass spectrometry, 

GC-MS). Nasuprot tome, predtretman klasičnom ekstrakcijom uz refluks uz dodatak enzima 

koji razgrađuju staničnu stijenku nije doveo do značajnog povećanja prinosa eteričnih ulja. 

Nadalje, primjenom GC-MS i tekućinske kromatografije ultra visoke djelotvornosti spregnute 

s tandemskom masenom spektrometrijom (engl. ultraperformance liquid chromatography-

tandem mass spectrometry, UPLC/MS-MS) pokazano je da su korištena eterična ulja i 

pripravci propolisa bogati bioaktivnim komponentama. In vitro testovima analiziran je njihov 

inhibicijski potencijal prema različitim životnim stadijima patogenih modelnih oomiceta te su 

određene EC50 vrijednosti (koncentracije testiranih uzoraka koje dovode do 50 %-tne 

inhibicije) rasta micelija i klijavosti zoospora, kao i MIC-vrijednosti (engl. minimum inhibitory 

concentration) pokretljivosti zoospora. Metodom ˝molecular docking˝ simulirano je vezanje 

odabranih komponenti propolisa, krizina, pinocembrina, cimetne kiseline i apigenina, na 



proteine oomiceta koji imaju ulogu u patogenezi. Svi testirani uzorci imali su snažno 

inhibicijsko djelovanje, međutim ono je bilo ovisno o tipu uzorka, vrsti patogena i stadiju 

životnog ciklusa (micelij ili zoospore). Uzorci propolisa pokazali su najsnažnije inhibicijsko 

djelovanje prema rastu micelija patogena A. astaci, dok je eterično ulje kadulje najsnažnije 

inhibiralo klijavost zoospora i rast micelija vrste S. parasitica te klijavost zoospora vrste A. 

astaci. Unatoč tome što su rezultati ukazali na neke molekule kao temelj inhibicijskog 

djelovanja, poput kamfora iz kadulje i krizina iz propolisa, demonstrirani inhibicijski učinak je 

najvjerojatnije posljedica sinergije većeg broja bioaktivnih komponenti prisutnih u malim 

koncentracijama. 

Temeljem svega navedenog, rezultati ove disertacije predstavljaju prvi korak u razvoju 

primjene eteričnih ulja i propolisa za kontrolu oomicetnih bolesti u akvakulturi. 
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1. INTRODUCTION 



1 

1.1. Oomycetes as pathogens of freshwater animals  

Oomycetes (phylum Oomycota, kingdom Chromista), also known as water moulds, are 

a group of filamentous, heterotrophic, fungal-like microorganisms that include many pathogens 

of plants and animals (Beakes et al., 2012; Diéguez-Uribeondo et al., 2009). The number of 

disease outbreaks caused by oomycetes in plant and animal populations is increasing, 

threatening food security as well as biodiversity of wild species (Fisher et al., 2012; Phillips et 

al., 2008). Agriculturally important plant pathogenic oomycete species have traditionally 

received much attention as they pose a global, persistent threat to food security (Abdulkhair, 

2021; Fisher et al., 2012; Kamoun et al., 2015). Among them, members of the genus 

Phytophthora have a particularly negative impact. Phytophthora infestans, the causal agent of 

potato late blight, for example, is responsible for the annual loss of more than USD 6 billion 

worldwide (Haverkort et al., 2008; Fisher et al., 2012). In comparison, animal pathogens are 

understudied, although several species cause devastating diseases in freshwater ecosystems and 

the methods to control their spread are extremely limited (Becking et al., 2021; Derevnina et 

al., 2016; Iberahim et al., 2018; Phillips et al., 2008; van West, 2006). The best-studied 

representatives of the animal pathogenic freshwater oomycetes are Aphanomyces astaci and 

Saprolegnia parasitica, both from the order Saprolegniales. Aphanomyces astaci is the 

causative agent of crayfish plague, a disease that mainly affects native European crayfish 

species (Jussila et al., 2021; Oidtmann et al., 2002). Saprolegnia parasitica causes 

saprolegniosis in numerous freshwater fish species, including salmonids, important for 

aquaculture (Gozlan et al., 2014). The number of disease outbreaks caused by oomycetes in 

aquaculture is increasing due to massive animal production, which is stressful for the animals 

and thus favours disease development (van den Berg et al., 2013). 

The complete life cycle of oomycetes consists of asexual reproduction, which involves 

the formation of zoosporangia and motile zoospores, and sexual reproduction, which involves 

the formation of resistant oospores that are morphologically distinct from zoospores (Figure 1; 

Phillips et al., 2008; van West, 2006). Oospores enhance survival of the pathogen under adverse 

environmental conditions and increase genetic variability (Beakes and Bartnicki-Garcia, 1989; 

Diéguez-Uribeondo et al., 2009), although in some species, including A. astaci, the sexual stage 

has not been documented (Bruno and Wood, 1999; Diéguez-Uribeondo et al., 2009; Phillips et 

al., 2008; Söderhäll and Cerenius, 1992). Zoospores represent the most important infectious 

phase of the life cycle and are crucial for the spread of the pathogen since they can travel over 
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long distances (Diéguez-Uribeondo et al., 2009; Lone and Manohar, 2018; Oidtmann et al., 

2002; Phillips et al., 2008; Strand, 2013). They are released from the hyphal tips into the 

surrounding water as zoosporangia grow out of the diseased host tissue (Diéguez-Uribeondo et 

al., 1994a; 2009; Oidtmann et al., 2002). Infection occurs when the zoospores find the 

appropriate host through chemotaxis (Cerenius and Söderhäll, 1984; Unestam, 1969), encyst 

on the surface of the host, e.g. the crayfish exoskeleton or the fish skin, and the cysts germinate 

into hyphae that invade internal tissues and organs (Bruno and Wood, 1999; Cerenius et al., 

1988; Hatai and Hoshia, 1993; Söderhäll and Cerenius, 1998; Willoughby and Roberts, 1994). 

In some oomycete species, including A. astaci and S. parasitica, zoospores encyst when they 

fail to find a suitable host and then release a new zoospore generation. This phenomenon is 

called repeated zoospore emergence or polyplanetism and increases the probability of finding 

a suitable host (Cerenius and Söderhäll, 1984; Diéguez-Uribeondo et al., 1994a). The formation 

of zoosporangia and the release of zoospores can be triggered under laboratory conditions by a 

lack of nutrients or a sharp drop in temperature (Lawrence et al., 2017). Furthermore, our recent 

study has shown that parameters related to organic matter in water, especially its aromatic part, 

can positively influence the sporulation intensity of S. parasitica (Pavić et al., 2022). 

 

Figure 1. Life cycle of the pathogen Saprolegnia parasitica (from Phillips et al., 2008). 
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1.1.1. Saprolegnia parasitica  

Species of the genus Saprolegnia, including S. parasitica, Saprolegnia australis and 

Saprolegnia diclina, are usually considered opportunistic secondary pathogens that infect the 

host under stress conditions (Gozlan et al., 2014; van den Berg et al., 2013). In our recent study, 

we used droplet digital PCR (ddPCR) to detect S. parasitica in environmental DNA (eDNA) 

samples isolated from water and confirmed the ubiquity of this pathogen in freshwater 

environments throughout Croatia. Furthermore, skin swabs collected from the surface of injured 

trout had significantly higher S. parasitica loads than healthy fish, which is consistent with its 

opportunistic lifestyle (Pavić et al., unpublished results). 

Saprolegnia spp. cause the disease saprolegniosis in numerous freshwater fish species, 

affecting eggs, juveniles and adults (Sarowar et al., 2019; Stueland et al., 2005; Thoen et al., 

2011). The main symptom of saprolegniosis is the development of a cotton-like tufts of 

mycelium on the skin of the animal or the surface of the eggs (Figure 2). As the infection 

progresses, the fish become lethargic and lose their balance, while the embryos in the infected 

eggs usually die as a result of hyphal rupture of the chorionic membrane (Bruno et al., 2011; 

Liu et al., 2014). The host range of the pathogen is very broad and includes many fish species 

such as rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta), Atlantic salmon 

(Salmo salar), Persian sturgeon (Acipencer persicus), silver perch (Bidyanus bidyanus), 

channel catfish (Ictalurus punctatus), Pacific salmon (Oncorhynchus nerka) and Japanese 

salmon (Oncorhynchus masu) (Gozlan et al., 2014). It can also infect crayfish species, 

especially if the animals are injured (Diéguez-Uribeondo et al., 1994b). 

 

          

Figure 2. Rainbow trout (Oncorhynchus mykiss) (A) and rainbow trout eggs (B) infected with S. 

parasitica (own photos). Oomycete mycelium is visible is on the fish tail (encircled). 

Saprolegniosis is a serious problem in salmon and trout farms and hatcheries. Massive 

infections of eggs are common and entire batches can be lost (Cao et al., 2012; Meyer, 1991; 

Pavić et al., 2021; Rach et al., 2005; Thoen et al., 2011; van den Berg et al., 2013). This is a 

significant problem worldwide, typically causing annual economic losses of more than 10% 

A B 
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and occasionally up to 50% (van den Berg et al., 2013; Diéguez-Uribeondo et al., 2007; 

Rezinciuc et al., 2014). 

1.1.2. Aphanomyces astaci 

Aphanomyces astaci, the causative agent of crayfish plague, was introduced to Europe 

in the 19th century with North American invasive crayfish species, like signal crayfish 

(Pacifstacus leniusculus), spinycheek crayfish (Faxonius limosus) and red swamp crayfish 

(Procambarus clarkii), that are mostly resistant to the disease and therefore act as carriers of 

the pathogen, spreading it through European waterways (Holdich et al., 2009; James et al., 

2017). In contrast, crayfish plague is usually fatal to native European freshwater crayfish, such 

as aquaculturally important noble crayfish (Astacus astacus). However, susceptibility to the 

disease is also related to host fitness, and even North American crayfish species can succumb 

to the disease if they live in stressful conditions, such as a high-density farming environment 

(Aydin et al., 2014; Cerenius et al., 2003; Edsman et al., 2015; Sandström et al., 2014; Thomas 

et al., 2020). Therefore, all freshwater crayfish are considered susceptible to A. astaci, albeit 

with varying sensitivity depending on species and individual immunity, and crayfish plague is 

listed as a notifiable animal disease by the World Organisation for Animal Health (OIE, 2019). 

During the infection process, the hyphae penetrate the exoskeleton of crayfish and 

spread throughout the tissues, leading to the development of the fatal disease (Edsman et al., 

2015; Kokko et al., 2012). Melanisation is often the first symptom and results from the localised 

crayfish innate immune response to the hyphal penetration (OIE, 2019) (Figure 3). As the 

disease progresses, other more serious signs appear, such as daytime activity, loss of limbs or 

abdominal paralysis (Alderman et al., 1987). 

Although the negative effects of A. astaci are studied in much more detail in natural 

ecosystems, the damage caused by this pathogen in astaciculture should be of concern, 

especially in the production of native European crayfish species, which are highly susceptible 

to infection by A. astaci (Becking et al., 2015; Benavent-Celma et al., 2021; Harlioǧlu, 2008; 

Holdich, 1993; Souty-Grosset and Reynolds, 2009). 
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Figure 3. Melanization of the exoskeleton of the 

narrow clayed crayfish, Pontastacus leptodactylus, a 

symptom of Aphanomyces astaci infection (own 

photo). 

1.2. Control methods for pathogenic oomycetes in aquaculture 

Despite these harmful effects, current methods to control oomycete infections in 

freshwater aquaculture systems are inadequate and unsustainable due to the lack of specific 

treatments and the fact that existing protocols use toxic chemicals that are harmful to human 

and animal health (Tedesco et al., 2019). Malachite green, for example, is highly effective in 

controlling Saprolegnia and Aphanomyces spp. (Alderman and Polglase, 1984; Willoughby and 

Roberts, 1992), but its use is not allowed in the EU (EC, 1990; EFSA, 2016) or the USA 

(Marking et al., 1994) due to its teratogenic and carcinogenic properties (Meyer and Jorgenson, 

1983; Panandiker et al., 1992; Srivastava et al., 2004). However, the chemicals currently used, 

such as formalin (aqueous solution of formaldehyde), bronopol (2-bromo-2-nitro-1,3-

propanediol), copper (II) sulphate, peracetic acid and hydrogen peroxide, are quite toxic as well, 

and thus unsuitable for extended usage. Formalin, for example, is dangerous to fish farm 

personnel who use it in therapeutic concentrations (Wooster et al., 2005), but also to consumers 

of the fish meat that contains its residues (Norliana et al., 2009). Bronopol, although considered 

a relatively weak pollutant, is easily hydrolytically and photolytically degraded in water, 

generating degradation products that are more toxic to aquatic biota than the parent compound 

and are likely to accumulate in the environment (Cui et al., 2011). Copper (II) sulphate can be 

toxic to zooplankton and alter its community composition (Jacob et al., 2016), while peracetic 

acid, a relatively new alternative, is toxic to aquatic biota at concentrations effective against A. 

astaci (Jussila et al., 2014). Finally, hydrogen peroxide has been reported to increase salmon 

mortality when applied at concentrations of 1.5 g/L or higher (Overton et al., 2018). 

Therefore, there is an increasing need to replace harmful chemical agents used to control 

oomycetes in freshwater aquaculture with environmentally friendly treatments that should not 

only be effective against oomycete pathogens but also safe for humans, animals and the 

environment. In this context, studies over the last decades indicate that alcoholic extracts 

(Afzali and Wong, 2017; Borisutpeth et al., 2009; 2014; Campbell et al., 2001; Pagliarulo et 
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al., 2018; Tandel et al., 2021a) and essential oils (Campbell et al., 2001; Caruana et al., 2012; 

Gormez and Diler, 2014; Hoskonen et al., 2015; Khosravi et al., 2012; Madrid et al., 2015; 

Metin et al., 2015; Nardoni et al., 2019; Parikh et al., 2021; Pirbalouti et al., 2009; Saleh et al., 

2015) of selected plants can inhibit oomycete pathogens in vitro. This is likely due to the 

abundance of bioactive compounds, i.e. plant specialized metabolites, which have numerous 

beneficial properties, such as antimicrobial, antiviral, antifungal and anti-oomycetic activity 

(Denaro et al., 2020; Loi et al., 2020; Montenegro et al., 2019). Furthermore, some studies also 

confirmed the activity of propolis preparations against oomycetes (Araújo et al., 2016; 

Campbell et al., 2001; Silva-Castro et al., 2018; Yusuf et al., 2005). The application of such 

preparations in aquaculture, either by dietary supplementation or by bathing eggs and animals 

in propolis/essential oil emulsions, has been shown to have positive effects on the immunity, 

growth and reproductive capacity of fish and crayfish, and the reduction of the oomycete 

infection rates (Abdelmagid et al., 2021; Fuat Gulhan and Selamoglu, 2016; Khosravi et al., 

2012; Metin et al., 2015; Mişe Yonar et al., 2017; Özdemir et al., 2022; Sari and Ustuner-Aydal, 

2018; Sönmez et al., 2015; Talas and Gulhan, 2009). Thus, essential oils and propolis are 

promising agents for the control of oomycete pathogens. 

1.1.3. Essential oils 

Essential oils are aromatic, volatile liquids isolated from plant material and rich in 

bioactive compounds. They are variable and complex mixtures of plant metabolites, consisting 

of terpene hydrocarbons, oxygenated terpenes and sesquiterpenes. As mentioned above, 

essential oils isolated from members of different plant families have been shown to inhibit 

pathogenic oomycetes in vitro (Campbell et al., 2001; Caruana et al., 2012; Gormez and Diler, 

2014; Hoskonen et al., 2015; Khosravi et al., 2012; Madrid et al., 2015; Metin et al., 2015; 

Nardoni et al., 2019; Parikh et al., 2021; Pirbalouti et al., 2009; Saleh et al., 2015). Specifically, 

plants from the Lauraceae and Lamiaceae families, such as Origanum onites, Laurus nobilis, 

Thymbra spicata and Cinnamomum zeylanicum, have been reported to inhibit pathogenic 

freshwater oomycetes, mostly Saprolegnia spp. (Gormez and Diler, 2014; Khosravi et al., 2012; 

Metin et al., 2015; Nardoni et al., 2019; Özdemir et al., 2022; Parikh et al., 2021; Pirbalouti et 

al., 2009). In comparison, the inhibitory effect of essential oils (and plant extracts) against 

Aphanomyces spp. is much less studied (Pagliarulo et al., 2018; Parikh et al., 2021). So far, 

there are no reports on the inhibitory activity of essential oils against A. astaci, but essential oils 

of some plants, such as oregano and thyme from the Lamiaceae family, showed good inhibitory 
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activity against the phylogenetically related plant pathogen Aphanomyces euteiches (Parikh et 

al., 2021). Moreover, most studies have only tested the potential of essential oils to inhibit 

mycelial growth of oomycete pathogens (Campbell et al., 2001; Gormez and Diler, 2014; Metin 

et al., 2015; Nardoni et al., 2019; Parikh et al., 2021; Tampieri et al., 2003), while the knowledge 

on the inhibition of zoospores by essential oils is limited (Madrid et al., 2015; Saleh et al., 

2015), although they are a major infectious phase of oomycete life cycle (Lone and Manohar, 

2018) and could be inhibited at several levels: sporulation, zoospore motility and zoospore 

germination. Data on the specific components of essential oils that could form the basis for the 

observed inhibitory effects are also inadequate at present, but it has been shown that some 

molecules of plant origin, such as curcumin and cinnamaldehyde, can inhibit zoospore 

production and hyphal growth of S. parasitica and S. australis in vitro (Tandel et al., 2021b). 

These results were also confirmed by in silico predictions of their binding to Saprolegnia spp. 

key proteins. 

Although essential oils are an environmentally acceptable alternative to the use of toxic 

chemicals for disease control, there are still several barriers to their large-scale application in 

aquaculture, such as high extraction costs, low yields and variability in the composition of 

essential oils extracted from plants from different locations and seasons (Russo et al., 2013). 

Therefore, the analyses of composition of essential oils and the identification of dominant 

compounds using appropriate methods (such as gas chromatography - mass spectrometry, GC-

MS) are needed before each application. To avoid this, additional research is needed to 

standardise the quality of the stock solutions, for example by optimising the growing conditions 

and harvesting time of the plant material utilised for extraction (Pavela and Benelli, 2016). In 

addition, new essential oil isolation protocols are constantly being developed to reduce 

production costs. Essential oils are usually isolated by steam- or hydrodistillation, but novel 

low-cost and environmentally friendly production techniques, such as ultrasound or enzymatic 

degradation of the cell wall, are increasingly used as pretreatments to distillation. The aim is to 

either increase the yield of essential oils, improve their chemical composition (i.e. the amount 

of the dominant component of the essential oil of the selected plant) or both, while reducing the 

extraction time (Périno-Issartier et al., 2013). The advantages of using ultrasound in solid-liquid 

extraction are the intensification of mass transfer, improved penetration of the solvent into the 

plant tissue and capillary effects. It is believed that the collapse of cavitation bubbles near the 

cell walls causes cell disruption and at the same time good penetration of the solvent into the 

cells by the ultrasonic jet (Toma et al., 2001). Several studies have reported that the addition of 
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ultrasonic pretreatment prior to hydrodistillation reduces the extraction time (Assami et al., 

2012; Lilia et al., 2018; Morsy, 2015; Seidi Damyeh et al., 2016), increases the yield (Kowalski 

et al., 2015; Kowalski and Wawrzykowski, 2009; Lilia et al., 2018; Morsy, 2015; Smigielski et 

al., 2014a) and improves the chemical composition of the oil (Lilia et al., 2018; Morsy, 2015; 

Périno-Issartier et al., 2013; Seidi Damyeh et al., 2016). In addition, enzyme-assisted extraction 

has been intensively studied in the last decade because the plant cell wall, as a resistant structure 

mainly composed of resistant polymers such as cellulose, xylan, lignin and pectin, can reduce 

the extraction efficiency. Enzymes such as cellulase, xylanase and pectinase are capable of 

degrading or disrupting cell wall components, thus enabling better release and more efficient 

extraction of bioactive compounds from plants and enhancing the bioactive content of essential 

oils and extracts (Balasubramaniam et al., 2019; Boulila et al., 2015; Hosni et al., 2013; Puri et 

al., 2012; Sowbhagya et al., 2010; 2011). However, while some authors reported that enzyme-

assisted extraction increases the yield of essential oils and improves their chemical composition 

(Baby and Ranganathan, 2016; Boulila et al., 2015; Chandran et al., 2012; Chávez-González et 

al., 2016; Hosni et al., 2013; Smigielski et al., 2014b; Sowbhagya et al., 2010; 2011), others 

have failed to demonstrate such effects (Dimaki et al., 2017), suggesting that further research 

of the application of enzymes in extraction of plant essential oils is needed. 

1.1.4. Propolis 

Propolis is a product of honey bees rich in bioactive compounds that form the basis of 

its beneficial properties (Gülçin et al., 2010; Mašek et al., 2018; Mitsui et al., 2018; Veloz et 

al., 2016). It usually consists of 45 – 55% plant balsams and resins (flavonoids, including 

flavonols, flavones and flavanones, phenolic acids and esters), 8 – 35% wax (mainly beeswax), 

5 – 10% essential oils and aromatic substances such as pinene, eudesmol, viridiflorol and 

tricosane), 5% fatty acids (mainly from wax), 5% pollen and 5% other organic compounds 

(ketones, lactones, quinones, steroids and sugars) and minerals, of which iron and zinc are the 

most abundant (de la Cruz-Cervantes et al., 2018). However, its chemical composition is highly 

variable and depends on the local vegetation and the time and method of collection (Bankova 

et al., 2014). So far, several types of propolis have been defined, depending on the geographical 

origin, the plant source and the predominant biologically active substances: Poplar, Birch, 

Green (Alecrim), Red (Clusia), Pacific and Canarian propolis, among many others (Bankova, 

2005). Poplar-type propolis is most widespread in Europe, North America and the non-tropical 

regions of Asia, with Populus spp. being the dominant plant source and flavones (such as 
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chrysin and apigenin), flavanones (such as pinocembrin and galangin), cinnamic acids (such as 

ferulic, isoferulic, caffeic and p-coumaric acid) and their esters being the main biologically 

active substances. However, despite the large variability in chemical composition between the 

different botanical types of propolis, it was found that its biological properties are usually 

similar and significant, (Auamcharoen and Phankaew, 2016; Dias et al., 2012; Seidel et al., 

2008). 

Propolis shows strong inhibitory activity against a range of microbes (Petruzzi et al., 

2020), from bacteria (Tukmechi et al., 2010) to fungi (Ota et al., 2001; Ramón-Sierra et al., 

2019; Siqueira et al., 2015) and viruses (Yildirim et al., 2016), but its anti-oomycetic potential 

has not yet been sufficiently explored. Previous studies have demonstrated the inhibitory effect 

of propolis on mycelial growth of plant pathogenic oomycetes of the genus Phytophthora 

(Silva-Castro et al., 2018; Yusuf et al., 2005) and on mycelial growth and zoospores of animal 

pathogens of the genera Aphanomyces (Aphanomyces invadans) (Campbell et al., 2001) and 

Pythium (Pythium insidiosum) (Araújo et al., 2016). Additionally, some major propolis 

components, like pinocembrin, inhibited Saprolegnia spp. growth to some extent, but the effect 

was not strong enough to explain the potent inhibition by the propolis mixture, implying that 

synergistic effect of many minor components is at play (Montenegro et al., 2019). Finally, the 

effect of propolis on oomycete pathogens of freshwater animals, such as A. astaci and S. 

parasitica, has not been tested in vitro or in vivo.  

1.3. Aims and hypothesis 

The hypothesis of this dissertation is that essential oils of Mediterranean plants, bay 

laurel (Laurus nobilis), sage (Salvia officinalis) and rosemary (Rosmarinus officinalis), as well 

as fluid propolis formulations can inhibit mycelial growth and zoospores' germination and 

motility of oomycete pathogens important in freshwater aquaculture. 

Aphanomyces astaci and Saprolegnia parasitica have been used as model pathogens 

because they cause serious diseases in animals important for aquaculture, namely crayfish and 

salmonid fish. Although there are studies indicating the anti-oomycetic potential of essential 

oils and propolis (Araújo et al., 2016; Campbell et al., 2001; Metin et al., 2015; Özdemir et al., 

2022), the effects of bay laurel, sage and rosemary essential oils, and propolis on A. astaci and 

S. parasitica have mostly not been tested, especially the inhibitory effect of these preparations 

on zoospores, the main infectious stage of the oomycete life cycle. 
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The postulated hypothesis was tested by the following research objectives: 

1. Determine the optimum conditions for the isolation of essential oils from Mediterranean wild 

plants, sage, bay laurel and rosemary, in order to increase the yield. 

2. Determine the chemical composition of essential oils and fluid propolis formulations. 

3. Determine the inhibitory potential of the essential oils and propolis samples against S. 

parasitica and A. astaci mycelial growth and zoospores' germination and motility. 

 



 

2. ORIGINAL SCIENTIFIC PAPERS 
  



 

2.1. Effect of enzymatic, ultrasound and reflux extraction pretreatments 

on the yield and chemical composition of essential oils 
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2.2. Essential oils of sage, rosemary, and bay laurel inhibit the life stages 

of oomycete pathogens important in aquaculture 
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2.3. Bioactive compounds in fluid propolis preparations inhibit different 

life stages of pathogenic oomycetes Aphanomyces astaci and 

Saprolegnia parasitica 
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3. DISCUSSION 
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In this doctoral thesis, it was shown for the first time that the essential oils of selected 

Mediterranean plants, bay laurel, sage and rosemary, as well as fluid propolis formulations can 

inhibit mycelial growth and zoospores of Aphanomyces astaci and Saprolegnia parasitica, 

oomycete pathogens important in freshwater aquaculture. In addition, the conditions for 

essential oil isolation were optimised to achieve a significant increase in yield, facilitating the 

potential large-scale application of essential oils for disease control in aquaculture. 

 

3.1. Different hydrodistillation pretreatments can improve the yield of 

essential oils while their chemical composition remains largely 

unchanged 

Rosemary and sage are aromatic medicinal plants within the Lamiaceae family that have 

received special attention due to their aromatic and chemical composition (Hamrouni-Sellami 

et al., 2013; Hosni et al., 2013), while bay laurel is a valuable medicinal plant from the 

Lauraceae family that is widely used as a spice and flavouring agent (Boulila et al., 2015). Due 

to the numerous bioactive compounds, the essential oils of these plants exhibit a wide range of 

biological activities, such as antimicrobial, preservative, antioxidant and antifungal, making 

them valuable in a number of applications, from medicine to food industry (Ali et al., 2014; 

Fidan et al., 2019; Soares et al., 2015). Recently, the potential of using these plants in 

aquaculture has also become increasingly apparent. Plant extracts are used as feed additives 

that can improve fish growth and/or immune response and even reduce disease- or toxin-related 

mortality (Metin et al., 2020; Naiel et al., 2019; Salomón et al., 2020; Turan et al., 2016; Zoral 

et al., 2017). For instance, when bay laurel essential oil solution was applied as a bath for the 

fertilised eggs of rainbow trout, it reduced the negative effects of S. parasitica infection 

(Özdemir et al., 2022). 

We investigated the effects of different hydrodistillation pretreatments on the yield and 

chemical composition of essential oils isolated from the selected Mediterranean plants 

rosemary, sage and bay laurel. Different pretreatments [hydrodistillation with reflux extraction 

pretreatment, HD-RE, hydrodistillation with reflux extraction pretreatment assisted with 

enzymes (pectinase, HD-REP; cellulase, HD-REC; xylanase, HD-REX; 

pectinase/cellulase/xylanase, HD-REPCX), hydrodistillation with ultrasound pretreatment, 

HD-US] significantly improved the yield of essential oils compared to the no-pretreatment 
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control (HD). At the same time, the pretreatments did not affect the quality of the oils and their 

composition was comparable to the no-pretreatment controls, as shown by the statistical 

analysis of GC-MS results. The obtained volatile profiles of the essential oils of sage, rosemary 

and bay laurel corresponded to those described in the literature: sage essential oil was 

dominated by oxygenated monoterpenes such as α-thujone and camphor and sesquiterpenes 

such as manool and veridiflorol; the main components of bay laurel essential oil were the 

monoterpenes α-terpenyl acetate and 1,8-cineole; and rosemary essential oil was richest in 

oxygenated monoterpenes such as borneol and camphor and in berbenone among the 

sesquiterpenes (Boulila et al., 2015; Hatipoglu et al., 2016; Hosni et al., 2013; Olmedo et al., 

2015; Russo et al., 2013). The composition of the essential oils after the different pretreatments 

was also comparable to the composition of the essential oils obtained by direct hydrodistillation. 

Other studies had also mostly shown that enzymatic and ultrasound pretreatments had no effect 

on the overall composition of the oil (Assami et al., 2012; Kowalski and Wawrzykowski, 2009; 

Smigielski et al., 2014a; 2014b; Sowbhagya et al., 2010, 2011), although some authors reported 

that the quantities of individual major components varied significantly depending on the 

extraction technique used (Boulila et al., 2015; Chandran et al., 2012; Dimaki et al., 2017; Hosni 

et al., 2013; Lilia et al., 2018; Morsy, 2015; Seidi Damyeh et al., 2016). We also observed that 

the ratios of some components varied between the different pretreatments, but these changes 

were not significant and did not alter the overall quality of the oil. 

Among the various pretreatments used in our study, reflux extraction (HD-RE) was the 

simplest. Incubation of finely ground plant material for 1 hour at 40 °C in purified water prior 

to hydrodistillation increased the essential oil yield by up to 60%. It has been previously shown 

that such soaking of plant material in water (Awada et al., 2012) or acidic medium (Dimaki et 

al., 2017) prior to distillation can increase the quantity of the isolated oil by promoting leaching 

of the constituents from the already disrupted cells. Swelling and hydration of the plant material, 

which enlarges the pores in the cell walls and increases the turgor pressure in the still intact 

plant cells, could also lead to better diffusion of the oil constituents into the soaking medium. 

For example, soaking agarwood in lactic acid for 168 hours (Nor Fazila and Ku Halim, 2012) 

and soaking thyme leaves in distilled water overnight at 50 °C improved the yield of essential 

oil (Awada et al., 2012). Thus, soaking the plant material prior to hydrodistillation, as applied 

here for selected Mediterranean plants, is a simple and cost-effective treatment that leads to a 

significant increase in essential oil yield. 
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We also tested whether the application of cell wall-degrading enzymes prior to 

hydrodistillation had a positive effect on extraction efficiency. We used this procedure as 

disruption of the cell walls could potentially facilitate the release of the essential oils from the 

plant cells. We followed previously described protocols (Boulila et al., 2015; Hosni et al., 2013) 

and applied separate and combined pretreatments with cellulase, pectinase and xylanase to the 

plant material. Prior to the extractions, we performed a small-scale enzyme assay and confirmed 

the activity of all enzymes under the reaction conditions. However, the application of the 

enzymes did not increase the essential oil yield beyond the reflux extraction pretreatments, 

suggesting that their activity was superfluous in our case. Contrary to our results, several studies 

have reported positive effects of cell-wall disrupting enzymes’ application on essential oil yield 

(Baby and Ranganathan, 2016; Boulila et al., 2015; Chandran et al., 2012; Chávez-González et 

al., 2016; Hosni et al., 2013; Smigielski et al., 2014b; Sowbhagya et al., 2010; 2011). For 

example, enzyme-assisted extraction pretreatment was used prior to hydrodistillation of bay 

laurel (Boulila et al., 2015), rosemary and thyme leaves (Hosni et al., 2013) and reportedly 

resulted in an increase in essential oil yield (up to 109% for thyme leaves). However, all the 

studies listed above lacked a no-enzyme control and the observed yield increase was calculated 

in comparison to a no-pretreatment control. In our case, the extraction results were compared 

with both the no-pretreatment control (HD) and the reflux extraction pretreatment (HD-RE), 

which served as a no-enzyme control since it was carried out under the same conditions as the 

enzyme-assisted extraction pretreatments (purified water at 40 °C for 1 hour), only without the 

addition of enzyme(s). Compared to the no-pretreatment control, the increase in essential oil 

yield was significant for all enzyme pretreatments individually, as well as for their combination, 

but there were no significant differences between the individual pretreatments (i.e. pretreatment 

with only one of the enzymes or all of them). Unexpectedly, reflux extraction resulted in 

approximately the same increase in essential oil yield as the enzyme-assisted pretreatments. 

This suggests that the increase in essential oil yield was due to the reflux extraction pretreatment 

itself (i.e. soaking the macerated plant material in warm water) and not to the enzymatic 

degradation of the cell wall. The beneficial effect of soaking the plant material alone observed 

here could not be adequately assessed and compared with the effect of enzymes in the earlier 

studies that were lacking no-enzyme controls (Baby and Ranganathan, 2016; Boulila et al., 

2015; Chandran et al., 2012; Chávez-González et al., 2016; Hosni et al., 2013; Smigielski et al., 

2014b; Sowbhagya et al., 2010; 2011). Besides our work, there are only two studies (Costa et 

al., 2021; Dimaki et al., 2017) that used the appropriate controls (i.e., both no-pretreatment and 

no-enzyme control) and both report results consistent with this study. Costa et al. (2021) 
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observed only a tiny increase in essential oil yield from Croton argyrophyllus leaves when they 

were pretreated with a multienzyme extract. Dimaki et al. (2017) found no significant difference 

in the essential oil yield of Sideritis sp. after applying enzymatic pretreatment to 

hydrodistillation or ultrasound-assisted essential oil extraction. The enzymatic pre-treatment 

resulted in approximately the same yield of essential oil as merely soaking the plant material in 

acidic buffer, similar to our results. All this suggests that the use of enzymatic pretreatments 

with the aim of increasing essential oil yields, although commonly reported as beneficial, 

should be carefully re-evaluated. This is particularly important considering the high cost of 

applying enzymes on a large scale. In summary, enzyme-assisted hydrodistillation 

pretreatments should be avoided unless a significant improvement in yield over a no-enzyme 

control can be demonstrated. 

Finally, we showed that the yield of essential oil increased by 50 – 60% after ultrasound 

pretreatment (HD-US: 30% of the maximum ultrasound power for 10 min) compared to the no-

pretreatment control (HD). This was similar to the results of reflux-assisted extraction 

pretreatment (HD-RE) and better than or comparable to the results of other studies that applied 

ultrasound as hydrodistillation pretreatment and reported yield increases between 5 and 35% 

(Kowalski et al., 2015; Kowalski and Wawrzykowski, 2009; Lilia et al., 2018; Morsy, 2015; 

Smigielski et al., 2014a). Even when the yield remained the same, the use of ultrasound 

pretreatment significantly shortened the essential oil isolation procedure (Assami et al., 2012; 

Seidi Damyeh et al., 2016). 

In summary, we obtained a high, 50 – 60%, increase in essential oil yield after reflux 

extraction (HD-RE) and ultrasound hydrodistillation pretreatment (HD-US). The HD-RE was 

the most cost-effective method, while HD-US resulted in the most significant reduction in total 

extraction time. Recently, it has been calculated that the application of bay laurel essential oil 

at the concentration required to suppress saprolegniosis in fertilised rainbow trout eggs is 

cheaper than the application of a therapeutic concentration of formalin, but more expensive than 

the application of hydrogen peroxide (Özdemir et al., 2022). Further reducing the cost of 

essential oil production, possibly by adding hydrodistillation pretreatments to current essential 

oil isolation protocols, would therefore enable the large-scale application of essential oils in 

aquaculture, reduce the use of harmful chemical treatments and thus facilitate the switch 

towards environmentally friendly practices. Another research direction we are currently 

pursuing as an extension of this doctoral thesis is the application of hydrodistillation by-

products for disease control in aquaculture. Indeed, the production of essential oils generates a 
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considerable amount of understudied and underexploited by-products, which are sometimes 

even considered waste. These by-products include hydrolates, water residues and solid residues, 

all of which have been shown to be rich in bioactive compounds (Abdel-Hameed et al., 2015; 

Bajer et al., 2017; Boulila et al., 2015; Maciąg and Kalemba, 2015; Rajeswara Rao et al., 2002; 

2003; Sánchez-Vioque et al., 2015; Santana-Méridas et al., 2014; Smail et al., 2011; Veličković 

et al., 2008; Wollinger et al., 2016). Our unpublished results point to the valuable chemical 

composition of the by-products of rosemary, sage and bay laurel essential oil production with 

the potential for application in aquaculture industry. 

3.2. Fluid propolis formulations and essential oils of Mediterranean wild 

plants inhibit mycelium and zoospores of pathogenic freshwater 

oomycetes 

We have tested the inhibitory activity of essential oils (rosemary, laurel bay, sage), fluid 

propolis formulations [P1 – 200,000 mg of propolis dry mass/L, and P2 – 250,000 mg of 

propolis dry mass/L with the addition of sage (Salvia officinalis) and peppermint (Mentha 

piperita) extracts (250,000 and 190,000 mg/L, respectively)], propolis main components 

chrysin and pinocembrin, and malachite green (as positive control) towards S. parasitica and 

A. astaci. All tested compounds showed inhibitory potential against the life stages of pathogenic 

oomycetes, although with differences in efficacy depending on the compound, oomycete 

species and oomycete life cycle stage. The overview of EC50 (i.e. sample concentration causing 

50% inhibition) and MIC (i.e. minimum inhibitory concentrations) values determined for 

different compounds in the Miljanović et al. (2021) and Miljanović et al. (2022) is presented in 

Table 1. 
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Table 1. EC50 values for radial mycelial growth inhibition and zoospore germination, and MICs  

for zoospore motility. P1 –fluid formulation of pure propolis, and P2 - fluid propolis 

formulation with addition of sage and peppermint. N.A. – not analyzed. 

 EC50 for mycelium growth EC50 for zoospore germination MIC for zoospore motility 

 µL/L µL/L µL/L 

Sample A. astaci S. parasitica A. astaci S. parasitica A. astaci S. parasitica 

Rosemary essential oil 59.6 >1000* 48.6 63.0 N.A. N.A. 

Sage essential oil 30.8 40.5 7.3 11.6 N.A. N.A. 

Bay laurel essential oil 98.4 >1000* 14.9 12.6 N.A. N.A. 

 mg/L mg/L mg/L 

P1 5.58 206.20 15.06 23.62 123.76 61.88 

P2 8.59 206.60 19.51 19.01 154.68 38.67 

Chrysin 2.59 >5.12* >10.18* 3.10 10.14 >20.28* 

Pinocembrin >1.28* >1.28* >2.54* >2.54* >5.07* >5.07* 

Malachite green (pos. control) 0.020 0.120 0.020 0.032 0.64 0.08 

*The highest concentration tested that did not cause 100% inhibition. Thus, EC50 value could not be 

determined. 

Overall, the results of the inhibition experiments showed that the mycelium of A. astaci 

was the most sensitive to fluid propolis formulations, while sage essential oil was the most 

effective inhibitor of S. parasitica mycelium (Table 1). The mycelium of S. parasitica was 

markedly more resistant to the effect of fluid propolis formulations than the mycelium of A. 

astaci (EC50 ~200 mg/L versus 6 – 9 mg/L). Similarly, the essential oils tested showed 

significant inhibition of mycelial growth of A. astaci (EC50 = 30.8 – 98.4 µL/L), while in the 

case of S. parasitica, mycelial growth was significantly inhibited only by sage essential oil 

(EC50 = 40.5 µL/L). Other studies have also shown inhibitory effects of essential oils and 

propolis on oomycetes, including S. parasitica, some Aphanomyces spp. and some more 

distantly related oomycetes such as the plant pathogen Phytophthora spp. The range of 

inhibitory concentrations of propolis samples against mycelial growth of such diverse oomycete 

species considered was wide, ranging from 3 to 2500 mg/L (Araújo et al., 2016; Campbell et 

al., 2001; Silva-Castro et al., 2018; Yusuf et al., 2005). In addition, previously reported 

inhibitory concentrations of essential oils from plants of the Lamiaceae and Lauraceae families, 

including bay laurel, against mycelium of S. parasitica ranged from 100 to 100 000 µL/L 

(Gormez and Diler, 2014; Metin et al., 2015; Nardoni et al., 2019; Özdemir et al., 2022; 

Tampieri et al., 2003). This wide range of concentrations of fluid propolis formulations and 
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essential oils required to inhibit mycelial growth of oomycetes may be due to variability in the 

chemical composition of the samples tested depending on differences in plant and geographical 

origin (Bankova, 2005; Campbell et al., 2001) and differences in the methodological 

approaches used (Klancnik et al., 2009), but also point to the interspecies differences in the 

sensitivity of oomycete pathogens to propolis and essential oils reported both in this study and 

in the literature (Araújo et al., 2016; Campbell et al., 2001; Gormez and Diler, 2014; Metin et 

al., 2015; Nardoni et al., 2019; Silva-Castro et al., 2018; Yusuf et al., 2005). 

Motile zoospores are an important stage in the asexual part of the life cycle of 

oomycetes. They are able to travel long distances and then germinate on a suitable substrate 

(Diéguez-Uribeondo et al., 1994a; Lawrence et al., 2017). In the case of pathogenic oomycetes, 

they represent infectious agents and are therefore an important target for anti-oomycetic 

strategies (Lawrence et al., 2017; Madrid et al., 2015; Saleh et al., 2015). We are the first to 

report the inhibitory activity of fluid propolis formulations and essential oils of sage, bay laurel 

and rosemary against the zoospores of A. astaci and S. parasitica. All samples tested showed 

good inhibitory potential against the germination of zoospores of both species, with EC50 values 

of ~20 mg/L for propolis and between 7.3 and 63.0 µL/L for essential oils. The effect of the 

propolis formulations on zoospore motility was also tested, and the MIC values ranged from 40 

to 150 mg/L. Similary to our results, the minimum propolis concentration required to inhibit 

zoospore motility of A. invadans was 10 mg/L (Campbell et al., 2001). Furthermore, the 

essential oils of Mentha longifolia and Thymus daenensis (Lamiaceae) completely inhibited the 

germination of zoospores of S. parasitica, albeit at much higher concentrations than those tested 

in this study (2500 and 5000 µL/L, respectively) (Saleh et al., 2015), indicating the promising 

properties of the essential oils tested in this doctoral thesis, particularly sage. 

We found differences between sensitivity of the tested species to the effects of the 

samples tested. Namely, for all the tested samples, the mycelium of A. astaci was more sensitive 

than the mycelium of S. parasitica. On the other hand, in both pathogens similar sensitivity of 

the germination of zoospores was observed, while S. parasitica zoospores were up to four times 

more sensitive to the application of the essential oils and propolis than the zoospores of A. astaci 

in terms of zoospore motility. The higher sensitivity of the mycelium of Aphanomyces spp. 

compared to Saprolegnia spp. has been reported previously: an absolute ethanol extract of 

Cassia fistula (Fabaceae) inhibited mycelial growth of S. parasitica and S. diclina at 2000 

mg/L, compared to 500 mg/L required to inhibit A. invadans (Borisutpeth et al., 2014). 
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When comparing the effects of the tested natural products on the different life stages of 

the same pathogen species, the zoospores were generally more susceptible to the same treatment 

than the mycelium, with the exception of the inhibitory effect of propolis on A. astaci, where 

the EC50 values for inhibition of mycelial growth were up to three times lower than the EC50 

values for germination of zoospores and up to 20 times lower than the MIC values for motility 

of zoospores. On the other hand, the mycelium of S. parasitica was up to 11 times more resistant 

than the zoospores for all essential oils and propolis tested. For example, the essential oil of bay 

laurel and rosemary showed a strong inhibitory effect on the germination of S. parasitica 

zoospores, but their effect on the growth of the mycelium was much weaker. Previous studies 

comparing the sensitivity of mycelium and zoospores of pathogenic oomycetes to various 

compounds showed different results (Borisutpeth et al., 2009; 2014; Hu et al., 2007; Lawrence 

et al., 2017; Madrid et al., 2015). For some combinations of oomycete species and anti-

oomycete agents, the mycelium was more resistant than the zoospores: e.g. the effect of 

propamocarb hydrochloride on Phytophthora nicotianae (Hu et al., 2007) and the effect of 

propolis and malachite green on A. invadans (Campbell et al., 2001). Sometimes zoospores 

were more resistant, such as the effect of Laureliopsis philippiana essential oil on S. parasitica 

and S. australis (Madrid et al., 2015), and sometimes similar sensitivity was observed for both 

zoospores and mycelium, such as the effect of C. fistula extract on S. parasitica, S. diclina and 

A. invadans (Borisutpeth et al., 2014). All these studies, including the results presented here, 

suggest that some compounds are more potent zoospore inhibitors (such as the essential oil 

sage, rosemary and bay laurel and fluid propolis formulations on S. parasitica), while others 

preferentially target the mycelium (such as the fluid propolis formulations on A. astaci). This 

probably reflects differences in the mode of action of the different compounds on zoospores 

and mycelium, as well as different detoxification mechanisms at different life stages and in 

different oomycete species. Further studies, including transcriptome and proteome analyses, are 

needed to clarify this. 

The observed inhibitory effects could be attributed to the rich bioactive compound of 

the essential oils and fluid propolis formulations, as shown by the results of GC-MS and 

UPLC/MS-MS analyses. The chemical composition of the essential oils tested was consistent 

with previous reports in which α-thujone, camphor and borneol were among the dominant 

components in sage essential oil, 1-8-cineole, linalool and sabinene in bay laurel essential oil, 

and camphor and carvacrol in rosemary essential oil (Boulila et al., 2015; Hatipoglu et al., 2016; 

Hosni et al., 2013; Olmedo et al., 2015; Russo et al., 2013). The composition of the fluid 
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propolis formulations was typical of poplar-type propolis (Ristojević et al., 2015), with the 

dominant flavonoid components being the flavones chrysin and apigenin, the flavanone 

pinocembrin and the flavonol galangin, and derivatives of hydroxycinnamic acid (ferulic acid, 

isoferulic acid, caffeic acid and p-coumaric acid). In addition, the P2 propolis formulation 

utilized in our studies was enriched by the addition of sage and peppermint extracts and 

therefore contained a higher number and abundance of the volatile compounds identified. As 

previously reported and also shown in this study, sage and peppermint are rich in oxygenated 

monoterpenes such as 1,8-cineole and α- and β-thujone (Hawrył et al., 2015; Vosoughi et al., 

2018), so these components identified in P2 are likely derived from these plants. 

The results of the PLS analysis indicate that the anti-oomycetic activity of sage essential 

oil as the strongest inhibitor among the essential oils tested could be attributed to some of its 

major constituents, camphor, α-thujone, veridiflorol, camphene and α-humulene, which were 

either absent or present only in low amounts in the other essential oils. In addition, β-pinene 

and 1,8-cineole (present in significant amounts in sage and bay laurel essential oils, and in low 

amounts in rosemary essential oil) were positively correlated with inhibition of germination of 

S. parasitica zoospores. Some of these compounds were previously reported to have good anti-

oomycetic (Tampieri et al., 2003; Tedesco et al., 2020) and antifungal activity (Agus et al., 

2019; 2020; Gazdağlı et al., 2018; Teker et al., 2021). For example, camphor at concentrations 

up to 38 mg/L progressively slowed mycelial growth of S. parasitica and S. delica, while 

thujone and β-pinene (in concentrations between 500 and 1000 mg/L, respectively) inhibited 

mycelial growth of S. parasitica (Tampieri et al., 2003; Tedesco et al., 2020). Moreover, α-

thujone and camphor were found to have a strong inhibitory effect on the fungi Fusarium 

graminearum, Fusarium culmorum and Schizosaccharomyces pombe, mainly explained by the 

induction of oxidative stress and subsequent apoptotic cell death, but also by a decrease in 

genomic stability and epigenetic changes (Agus et al., 2019; 2019; Gazdağlı et al., 2018; Teker 

et al., 2021). Thus, the high camphor content in sage essential oil likely contributed significantly 

to the observed inhibitory effects. The mechanism underlying the inhibition of oomycetes by 

camphor remains to be investigated, but could be due to oxidative stress-mediated apoptosis, 

similar to that observed in fungi. All these phytochemicals were also found in P2, but not in P1. 

However, both propolis preparations, i.e. P1 and P2, showed similar inhibitory effects, 

suggesting that the addition of plant extracts in P2 did not contribute significantly to its 

inhibitory effect. The concentration of active biomolecules from sage and pepper mint was 

probably too low, so the propolis formulation as such was the dominant inhibitor. 
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We also tested the anti-oomycetic activity of the major propolis constituents. We chose 

chrysin as the dominant flavone and pinocembrin as the dominant flavanone and used realistic 

concentrations that can be applied in aquaculture by diluting the crude propolis formulations 

100-fold or more. Overall, pinocembrin did not exert significant toxicity to any of the life stages 

of A. astaci and S. parasitica at the concentrations tested, although it has previously been shown 

to inhibit mycelial growth and zoospore germination of Saprolegnia spp., albeit at ≥ 100-fold 

higher concentrations (Montenegro et al., 2019). In comparison, the toxicity of chrysin to 

mycelial growth and zoospore motility of A. astaci and zoospore germination of S. parasitica 

was significant at concentrations approximately corresponding to 100-fold or more times 

diluted fluid propolis formulations (1 – 10 mg/L), consistent with previous reports of the 

fungicidal activity of chrysin against Candida albicans and Fusarium oxysporum (Favre-Godal 

et al., 2013). 

We have also applied molecular docking to predict the binding of selected propolis 

components chrysin, apigenin, cinnamic acid and pinocembrin to various oomycete proteins 

suggested to play a role in pathogenesis. In agreement with the observed strong inhibitory effect 

of fluid propolis formulations on the mycelium of A. astaci, we predicted strong binding of 

apigenin, chrysin and pinocembrin to the active site of A. astaci endochitinase, an enzyme 

mainly expressed in the mycelium and thought to play a role in pathogenesis by degrading the 

chitin layer of the crayfish cuticle during the infection process (Andersson and Cerenius, 2002). 

Regarding the target proteins of S. parasitica, the most efficient binding of the propolis 

components apigenin, chrysin and pinocembrin was predicted to be with thrombospondin. It 

was hypothesised that thrombospondin of S. parasitica may play a role in adhesion to fish cells 

during the initial phase of the infection process, and it was found to be highly expressed in cysts 

(Srivastava et al., 2018). In comparison, the predicted binding of the analysed phytochemicals 

to the V-type proton ATPase of S. parasitica (Srivastava et al., 2018), which is expressed in 

mycelium, was much weaker, consistent with the higher resistance of S. parasitica mycelium 

observed in vitro compared to zoospores/cysts. However, it should be noted that the predicted 

binding of chrysin and pinocembrin to the analysed group of oomycete proteins was similar, 

although the results of in vitro experiments show that chrysin has a stronger effect. This 

suggests that other proteins that bind chrysin more strongly than pinocembrin may play a role 

in propolis-mediated oomycete inhibition. 

All this suggests that the observed anti-oomycetic effect of the tested fluid propolis 

formulations and essential oils cannot be explained only by the activity of the dominant 
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components, such as chrysin or camphor, but is probably due to the synergistic action of 

different components present in low concentrations (Madrid et al., 2015; Ristojević et al., 2015; 

Tampieri et al., 2003). Based on the results obtained, we suggest that propolis extracts and 

essential oils from Mediterranean wild plants could be used as an ecologically acceptable 

method to control A. astaci and S. parasitica in aquaculture. Essential oils and propolis extracts 

have already been tested for the possibility of use in aquaculture, either through dietary 

supplementation (Abdelmagid et al., 2021; Metin et al., 2020; Mişe Yonar et al., 2017; Sari and 

Ustuner-Aydal, 2018; Sönmez et al., 2015;) or by bathing the eggs and animals in essential oil 

or propolis suspensions (Fuat Gulhan and Selamoglu, 2016; Khosravi et al., 2012; Metin et al., 

2015; Özdemir et al., 2022; Talas and Gulhan, 2009; Zoral et al., 2017) or both. Studies have 

shown that the application of propolis and plant extracts has a positive effect on animal 

immunity, reproductive performance and growth. For example, crayfish feed containing 4% 

propolis improved the reproductive performance of the animals by increasing the number of 

pleopodal eggs and reducing oxidative stress under controlled hatchery conditions (Mişe Yonar 

et al., 2017). Nile tilapia (Oreochromis niloticus) feed enriched with propolis or propolis 

nanoparticles (10 g/kg) mitigated the effects of glyphosate-induced oxidative stress and 

immunosuppression (Abdelmagid et al., 2021). Immersion of rainbow trout (O. mykiss) in 0.01 

g/L propolis suspension resulted in positive changes in blood biochemical, electrolytic and 

haematological parameters (Fuat Gulhan and Selamoglu, 2016; Talas and Gulhan, 2009). It has 

also been shown that bay laurel and sage leaf extracts used as feed additives can act as growth 

promoters in aquaculture (Salomón et al., 2020; Turan et al., 2016). Feeds enriched with 

rosemary and sage plant extracts have also been effective in reducing the harmful effects of 

pathogens, both bacteria such as Aeromonas sobria and Streptococcus iniae (Abutbul et al., 

2004; Metin et al., 2020) and parasites such as the monogenean Dactylogyrus minutus (Zoral 

et al., 2017). Most importantly, the application of 500 ppm bay laurel essential oil as a bath for 

fertilised eggs of rainbow trout has been shown to reduce the negative effects of infection with 

S. parasitica (Özdemir et al., 2022).  

The results of this dissertation open many new research directions. For instance, as sage 

was the most potent inhibitor of S. parasitica, it’s potential protective effect against S. 

parasitica infection could be tested by immersion of trout eggs in sage essential oil suspensions 

and monitoring the relevant endpoints such as hatching rate and larval survival rate. Also, the 

effect of dietary addition of propolis on mortality caused by A. astaci in native European 
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crayfish of aquaculture importance, such as Pontastacus leptodactylus and Astacus astacus, 

could be tested.  



 

4. CONCLUSIONS 
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Overall, the results of this doctoral thesis represent a starting point for further in vivo 

testing of the application of essential oils and propolis formulations in freshwater aquaculture 

and open the perspective for the development of environmentally acceptable alternatives for 

the control of diseases caused by oomycetes. The following main conclusions arise from the 

results obtained: 

Considering the high cost of essential oil production compared to the price of chemical 

treatments currently used to control oomycete diseases in aquaculture, we optimised the 

isolation of essential oil from bay laurel, sage and rosemary leaves to increase the yield. 

Ultrasonic hydrodistillation pretreatment and reflux extraction pretreatment proved to be 

environmentally friendly methods that increased essential oil yields by up to 60%. At the same 

time, the results of GC-MS analyses showed that the overall quality of the oil remained largely 

unchanged. In contrast, the use of enzyme-assisted pretreatments did not increase the essential 

oil yield compared to the reflux extraction pretreatments, which served as no-enzyme controls, 

i.e. soaking the plant material in water at 40 °C was sufficient to disrupt the cells and additional 

enzyme activity was redundant. 

In general, all tested samples showed inhibitory potential against zoospore motility and 

germination and mycelial growth of both pathogens, although with differences in efficacy 

depending on the substance, oomycete species and oomycete life cycle stage. The fluid propolis 

formulations most potently inhibited mycelial growth of A. astaci, while the sage essential oil 

most strongly inhibited zoospore germination and mycelial growth of S. parasitica and 

zoospore germination of A. astaci. The observed inhibitory effects could be attributed to the 

abundant bioactive content of the natural products, as shown by the results of GC-MS and 

UPLC/MS-MS analyses. Although our results point to several molecules as the basis of the 

inhibitory effect, such as camphor in the sage essential oil and chrysin in the fluid propolis 

formulations, the observed anti-oomycetic effect cannot be explained only by the activity of the 

dominant components, but is probably due to the synergistic effect of different components 

present in low concentrations. 
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Figure S1. Sage 1H NMR spectrum (600 MHz; 0.5 mL CDCl3; 5 mm sample tube; 25 °C; 32 K data points; 256 

scans; 0.37 Hz/point; 1 s delay). 

X6 
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Figure S2. Sage 1H-1H COSY NMR spectrum (600 MHz, CDCl3-d, 25 °C). 

 

Figure S3. Sage 1H-1H TOCSY NMR spectrum (600 MHz, CDCl3-d, 25 °C). 
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Figure S4. Sage 1H-13C HMQC NMR spectrum (CDCl3-d, 25 °C). The 600 MHz 1H NMR spectrum is shown at 

the top edge, and a 150 MHz 13C NMR spectrum at the left-hand edge. 

 

Figure S5. Sage 1H-13C HMBC NMR spectrum (CDCl3-d, 25 °C). The 600 MHz 1H NMR spectrum is shown at 

the top edge, and a 150 MHz 13C NMR spectrum at the left-hand edge. 
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Figure S6. Sage 13C APT NMR spectrum (150 MHz, 0.5 mL CDCl3; 5 mm sample tube; 25 °C; 64 K data points; 

44506 scans; 0.60 Hz/point; 1 s delay). 

 

Figure S7. Bay laurel 1H NMR spectrum (600 MHz, 0.5 mL CDCl3; 5 mm sample tube; 25 °C; 32 K data points; 

256 scans; 0.37 Hz/point; 1 s delay). 

 

Figure S8. Bay laurel 1H-1H COSY NMR spectrum (600 MHz, CDCl3-d, 25 °C). 

X6 
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Figure S9. Bay laurel 1H-1H TOCSY NMR spectrum (600 MHz, CDCl3-d, 25 °C). . 

 

Figure S10. Bay laurel 1H-13C HMQC NMR spectrum (CDCl3-d, 25 °C). The 600 MHz 1H NMR spectrum is 

shown at the top edge and a 150 MHz 13C NMR spectrum at the left-hand edge. 

 

Figure S11. Bay laurel 1H-13C HMBC NMR spectrum (CDCl3-d, 25 °C). The 600 MHz 1H NMR spectrum is 

shown at the top edge and a 150 MHz 13C NMR spectrum at the left-hand edge. 
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Figure S12. Bay laurel 13C APT NMR spectrum (150 MHz, 0.5 mL CDCl3; 5 mm sample tube; 25 °C; 64 K data 

points; ca. 30000 scans; 0.60 Hz/point; 1 s delay). 

 

   

Figure S13. Rosemary 1H NMR spectrum (600 MHz, 0.5 mL CDCl3; 5 mm sample tube; 25 °C; 32 K data points; 

128 scans; 0.37 Hz/point; 1 s delay). 

X6 
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Figure S14. Rosemary 1H-1H COSY spectrum (600 MHz, CDCl3-d, 25 °C). 

 

Figure S15. Rosemary 1H-1H TOCSY spectrum (600 MHz, CDCl3-d, 25 °C). . 
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Figure S16. Rosemary 1H-13C HMQC spectrum (CDCl3-d, 25 °C). The 600 MHz 1H NMR spectrum is shown at 

the top edge and a 150 MHz 13C NMR spectrum at the left-hand edge. 

 

Figure S17. Rosemary 1H-13C HMBC spectrum (CDCl3-d, 25 °C). The 600 MHz 1H NMR spectrum is shown at 

the top edge and a 150 MHz 13C NMR spectrum at the left-hand edge. 

 

Figure S18. Rosemary 13C APT NMR spectrum (150 MHz, 0.5 mL CDCl3; 5 mm sample tube; 25 °C; 64 K data 

points; ca. 34000 scans; 0.60 Hz/point; 1 s delay). 
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Figure S19. A) Rosemary, B) sage and C) bay laurel essential oils 1H NMR spectra at 600 MHz in CDCl3-d. 

Enumeration scheme used for the assignment of the NMR spectra is shown for every compound. 
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Figure S20. Scatter plot showing correlations between different pretreatments (on the diagonal) regarding chemical 
composition of sage essential oils. Significant p-values based on Spearman’s rank test are shown above the diagonal, while 
bivariate scatter plots are shown below the diagonal. 

 

 

 
Figure S21. Scatter plot showing correlations between different pretreatments (on the diagonal) regarding chemical 

composition of bay laurel essential oils. Significant p-values based on Spearman’s rank test are shown above the diagonal, 
while bivariate scatter plots are shown below the diagonal.  
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Figure S22. Scatter plot showing correlations between different pretreatments (on the diagonal) regarding chemical 
composition of rosemary essential oils. Significant p-values based on Spearman’s rank test are shown above the diagonal, 
while bivariate scatter plots are shown below the diagonal. 
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Table S1. Chemical composition of sage essential oils isolated by hydrodistillation with and without different 

pretreatments. 

 group compound RI1 % total peak area 

m
on

ot
er

p
en

es
 

 

   HD2 HD-
RE3 

HD-
REX4 

HD-
REC5 

HD-
REP6 

HD-
REP
CX7 

HD-
US8 

monoterpene 
hydrocarbons 

cis-salvene < 900 0.01 0.01 0.08 0.02 0.03 0.15 0.01 

tricyclene 929 0.03 0.04 0.01 0.01 0.01 0.10 0.01 

α-thujene 932 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

α-pineneS 941 1.25 1.03 1.56 1.30 1.35 2.64 1.83 

campheneS 956 1.49 1.94 2.54 2.26 2.26 3.85 2.91 

verbenene 962 0.04 -9 - - - - - 

sabineneS 979 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

β-pineneS 982 0.45 0.47 0.59 0.53 0.59 0.46 0.40 

β-myrceneS 992 0.08 0.12 0.34 0.28 0.25 0.53 0.37 

δ-car-3-eneS 1014 0.05 - - - - - - 

α-terpineneS 1021 0.01 0.01 0.02 0.01 0.01 0.09 0.01 

p-cymeneS 1030 0.19 0.22 0.47 0.46 0.39 0.99 0.90 

limoneneS 1034 0.10 0.32 0.85 0.77 0.68 1.46 1.16 

γ-terpineneS 1063 0.03 0.01 0.12 0.02 0.01 0.08 0.01 

α-terpinolene 1091 0.06 0.01 0.01 0.01 0.02 0.05 0.01 

oxygenated 
monoterpenes 

1,8-cineoleS 1038 5.22 4.56 6.09 5.94 5.31 7.23 8.22 

linaloolS 1104 2.17 0.61 0.79 0.59 0.51 0.37 0.39 
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α-thujone*S 1110 13.52 15.3
3 

15.16 20.15 19.91 18.1
8 

23.48 

β-thujone*S 1121 6.57 6.63 6.45 8.33 8.03 8.51 10.22 

chrysanthenone 1129 0.21 - - - - 0.04 - 

thujyl alcohol 1141 0.45 0.38 0.19 0.28 0.25 0.23 0.27 

camphor*S 1149 12.99 11.6
9 

9.50 12.58 11.98 12.4
3 

17.03 

pinocarvone 1167 0.07 - - - - - - 

borneolS 1172 7.73 5.77 3.52 4.59 4.76 4.12 5.18 

trans-
pinocarvone 

1179 0.33 - - - - - - 

4-terpineolS 1182 0.92 0.65 0.65 0.61 0.63 0.44 0.53 

p-cymen-8-olS 1191 0.28 0.18 0.01 0.01 0.01 0.12 0.01 

α-terpineolS 1195 0.99 0.31 0.58 0.32 0.28 0.18 0.01 

myrtenolS 1200 0.37 0.13 - - - 0.05 - 

homomyrtenol 1208 0.39 - - - - - - 

trans-carveol 1224 0.17 0.11 0.01 0.01 0.01 0.07 - 

geraniolS 1261 0.11 0.01 - - - - - 

bornyl acetateS 1287 1.31 1.20 1.04 1.04 1.30 1.09 1.00 

trans-sabinyl 
acetate 

1294 0.61 0.51 0.37 0.34 0.44 0.39 0.16 

trans-carvyl 
acetate 

1341 0.04 - - - - - - 

α-terpenyl 
acetate 

1355 0.25 0.68 2.25 0.34 1.32 - - 

total 
monoterpenes 

  58.51 52.9
5 

53.22 60.82 60.36 63.7
8 

74.23 

se
sq

ui
te

rp
en

es
 

 

sesquiterpene 
hydrocarbons 

α-ylangene 1373 0.06 - - 0.01  0.04 - 

α-copaeneS 1378 0.18 - 0.12 0.02 0.01 0.11 - 

β-elemeneS 1393 - - 0.26 0.01 0.01 - - 

trans-
caryophylleneS 

1421 1.21 0.73 1.59 0.93 1.03 0.51 0.30 

α-cadinene 1540 0.04 0.01 0.01 0.01 0.01 0.07 0.01 

α-guaiene 1441 0.01 0.01 0.22 0.03 0.03 0.01 0.01 

α-humuleneS 1456 3.15 3.44 4.40 4.78 4.60 3.00 1.76 

alloaromadendr
eneS 

1462 0.06 0.01 0.01 0.03 0.01 0.08 0.01 

α-amorphene 1478 0.32 0.19 0.28 0.27 0.20 0.25 0.01 

β-selinene 1488 0.05 - 0.16 0.01 - - - 
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ledeneS 1496 - - 0.43 0.05 - 0.16 - 

α-muurolene 1501 0.13 - 0.18 0.01 - 0.07 - 

β-bisabolene 1510 0.07 - - - - - - 

γ-cadinene 1515 0.26 0.07 0.19 0.10 0.09 0.10 0.01 

δ-cadineneS 1525 0.67 0.35 0.62 0.45 0.35 0.37 0.21 

trans-α-
bisabolene 

1545 - 0.01 - - - - - 

α-calacorene 1546 0.08 0.01 0.17 0.01 0.01 0.01 - 

oxyganeted 
sesquiterpenes 

berbenone 1212 2.10 0.01 - - - - - 

spathulenol 1581 - 0.10 0.50 - 0.01 - - 

caryophyllene 
oxideS 

1584 1.00 0.86 1.01 0.62 0.71 0.25 - 

veridiflorol* 1594 10.13 14.3
9 

10.60 11.70 12.63 10.6
4 

6.52 

α-
caryophylladien
ol 

1640 0.31 - 0.29 0.05 0.01 - - 

α-cadinol 1646 - 0.16 - 0.01 - 0.09 - 

β-eudesmolS 1654 0.10 0.18 0.46 0.02 - 0.06 - 

t-muurolol 1658 0.19 0.27 0.74 0.01  0.09 - 

(E,E)-farnesyl 
acetone 

1919 0.15 - - - - - - 

manool* 2055 8.30 13.7
4 

10.80 12.99 12.24 11.4
7 

14.33 

total 
sesquiterpenes 

  28.57 34.5
4 

33.04 32.12 31.95 27.3
8 

23.17 

ot
he

rs
 

 

phenylpropane 
derivatives 

thymolS 1296 0.04 0.36 0.01 0.01 0.01 0.06 0.01 

carvacrolS 1307 0.50 0.01 0.17 0.02 0.01 0.26 0.01 

eugenolS 1363 0.23 0.36 2.68 0.47 0.23 - - 

methyleugenolS 1409 0.15 0.34 2.14 0.37 0.45 - - 

elemicin 1561 - - 0.27 - - - - 

other 
compounds 

methyl 
jasmonateS 

1651 0.11 - - - - - - 

pentadecanalS 1715 0.03 - - - - - - 

hexadecan-1-olS 1885 0.01 - 0.01 - - - - 

total others   1.07 1.07 5.28 0.87 0.7 0.32 0.02 

 total:   88.15 88.5
6 

91.54 93.81 93.01 91.4
8 

97.42 

1Retention index on a MSD model 5975 C and HP-5MS; 2HD - hydrodistillation without pretreatment (negative 

control); 3HD-RE - hydrodistillation with reflux extraction pretreatment; hydrodistillation with reflux extraction 
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pretreatment assisted with enzymes: 4HD-REX xylanase; 5HD-REC cellulase; 6HD-REP pectinase; 7HD-REPCX 

pectinase + cellulase + xylanase; 8HD-US hydrodistillation with ultrasonic pretreatment; 9(-) not detected; * - 

compounds confirmed by NMR, S - compounds identified with the standard. 

 

Table S2. Chemical composition of bay laurel essential oils isolated by hydrodistillation with and without different 

pretreatments. 

 Group Compound RI1 % Total Peak Area 

m
on

ot
er

p
es

 

n
es

 

   HD2 HD-
RE3 

HD-
REX4 

HD-
REC5 

HD-
REP6 

HD-
REPC
X7 

HD-
US8 

monoterpene 
hydrocarbons 

α-thujene 932 0.04 0.04 0.02 0.01 0.14 0.01 0.09 

α-pineneS 941 0.56 1.12 0.32 2.05 1.77 1.88 1.10 

campheneS 956 0.28 0.21 0.08 0.23 0.25 0.02 0.23 

sabineneS 979 1.08 1.23 0.60 3.39 3.03 2.74 1.74 

β-pineneS 982 0.66 0.89 0.41 1.82 1.63 1.47 0.84 

β-myrceneS 992 0.11 0.04 0.03 0.01 0.19 0.02 0.12 

δ-car-3-eneS 1014 -9 0.05 - - 0.04 0.01 0.07 

α-terpineneS 1021 0.05 0.01 0.07 0.01 0.19 0.02 0.15 

p-cymeneS 1030 0.14 0.09 0.08 0.01 0.21 0.04 0.32 

limoneneS 1034 0.01 0.01 0.05 0.69 0.02 0.62 0.76 

γ-terpineneS 1063 0.08 0.07 0.13 0.32 0.32 0.02 0.28 

α-terpinolene 1091 0.03 - 0.05 - 0.09 - 0.08 

oxygenated 
monoterpenes 

1,8-cineole 1038 13.26 16.86 13.23 26.40 20.15 27.10 19.56 

cis-sabinene 
hydrate 

1073 0.10 0.33 0.04 - - - 0.22 

linalool*S 1104 7.80 6.39 8.30 6.27 7.14 4.91 4.92 

α-thujoneS 1110 3.51 1.09 0.09 0.01 0.09 0.02 1.18 

β-thujoneS 1121 1.97 0.45 0.06 - 0.01 - 0.53 

cis-p-menth-2-en-
1-ol 

1127 - - 0.09 - 0.05 - 0.06 

chrysanthenone 1129  0.13 - - - - 0.06 

thujyl alcohol 1141 0.09 - - - - - - 

terpenene-1-ol 1146 0.11 - 0.15 - - - 0.07 

camphorS 1149 2.90 2.69 0.05 0.48 0.20 1.57 1.93 

pinocarvone 1167 - 0.09 - - - - 0.12 

borneolS 1172 2.04 3.05 1.45 1.09 1.06 1.74 1.55 
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isopinocamphone 1178 - 0.20 - - - - - 

4-terpineolS 1182 1.83 1.93 2.55 2.23 2.46 2.65 1.71 

p-cymen-8-olS 1191 - 0.08 - - - - 0.05 

α-terpineolS 1195 3.76 4.25 5.26 4.06 4.17 5.27 3.84 

myrtenolS 1200 - 0.14 0.06 - - - - 

homomyrtenol 1208 - 0.21 - - - - - 

nerolS 1233 0.35 0.48 0.56 0.01 0.35 0.01 0.21 

linalyl acetateS 1259 0.29 0.07 0.12 0.01 0.03 0.01 0.02 

geraniolS 1261 - 0.10 0.09 - - - - 

bornyl acetateS 1287 1.97 0.83 1.11 0.74 0.83 0.83 0.64 

trans-sabinyl 
acetate 

1294 0.15 - - - - -  

δ-terpinyl acetate 1319 0.90 0.63 0.81 0.51 0.61 0.46 0.54 

2-acetoxy-1,8-
cineole 

1344 0.16 0.19 0.24 0.01 0.18 0.02 0.12 

α-terpenyl 
acetate* 

1355 16.94 15.71 17.18 17.69 15.16 18.16 15.84 

neryl acetate 1367 0.23 0.13 0.23 0.01 0.18 0.01 0.12 

trans-cinnamyl 
acetate 

1449 0.20 - 0.15 - 0.12 - - 

spathulenol 1581 2.40 1.52 1.61 1.08 1.17 1.18 1.62 

manool 2055 2.10 1.03 - - - - - 

total 
monoterpene
s 

  66.1 62.34 55.27 69.14 61.84 70.79 60.69 

se
sq

ui
te

rp
en

es
 

 

sesquiterpenes 
hydrocarbons 

α-ylangene 1373 0.15 0.14 0.23 0.02 0.23 0.01 0.26 

α-copaeneS 1378 0.06 0.10 0.04 0.01 0.01 0.01 0.09 

β-cubebene 1391 0.06 - 0.05 - - - 0.04 

β-elemeneS 1393 0.50 0.40 0.69 1.47 1.63 0.50 1.53 

trans-
caryophylleneS 

1421 1.40 2.47 3.37 3.19 3.49 3.99 2.92 

α-guaiene 1441 0.30 0.31 0.50 0.46 0.55 0.49 0.46 

guaia-3,7-diene 1446 0.07 0.12 0.17 0.01 0.17 0.01 0.18 

α-humuleneS 1456 0.67 0.74 0.54 0.38 0.56 0.46 0.66 

alloaromadendren
e 

1462 0.13 0.14 0.15 0.01 0.13 0.02 0.18 

α-amorphene 1478 0.10 0.14 0.06 0.01 0.01 0.01 0.12 
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germacrene DS 1482 0.30 0.37 0.65 0.54 0.59 0.02 0.63 

β-selinene 1488 0.38 0.33 0.59 0.44 0.48 0.51 0.59 

bicyclogermacren
e 

1496 1.18 0.83 1.39 0.96 1.07 1.19 1.40 

germacrene A 1505 0.71 0.58 1.43 0.93 0.94 1.25 0.87 

γ-cadineneS 1515 0.25 0.33 0.41 0.32 0.39 0.02 0.52 

δ-cadinene 1525 0.44 0.66 0.70 0.54 0.53 0.58 0.81 

trans-α-
bisabolene 

1545 0.32 0.25 0.42 0.01 0.31 0.02 0.20 

oxygenated 
sesquiterpenes 

berbenone 1212 - 1.49 - 0.52 0.15 1.17 0.70 

elemolS 1553 0.13 0.09 0.12 0.02 0.12 0.01 0.15 

nerolidolS 1568 0.19 0.06 0.11 0.01 0.07 0.02 0.01 

caryophyllene 
oxideS 

1584 0.70 1.39 1.50 0.92 1.07 1.19 1.07 

globulolS 1586 0.18 - - - - - - 

veridiflorol 1594 4.14 1.64 0.37 0.01 0.30 0.02 1.16 

isospathulenol 1642 0.41 - 0.13 - 0.19 - 0.24 

α-cadinol 1646 0.35 0.37 0.49 0.01 0.40 0.01 0.39 

β-eudesmolS 1654 1.11 0.67 0.85 0.52 0.67 0.02 0.78 

α-eudesmol 1657 1.25 - - - - - - 

t-muurolol 1658 - 0.83 1.30 - 1.06 0.01 1.06 

total 
sesquiterpene
s 

  15.63 14.45 16.26 11.31 15.12 11.54 17.02 

ot
he

rs
 

 

phenylpropan
e derivatives 

p-allylanisoleS 1199 0.08 - - - - - 0.08 

3-phenylpropenal 1275 0.06 - 0.14 - 0.06 - - 

thymolS 1296 0.05 - - - - -  

carvacrolS 1307 0.16 - - - - -  

eugenolS 1363 2.76 6.33 9.23 8.42 7.82 8.20 5.64 

methyleugenol*S 1409 7.15 8.52 9.71 9.21 8.20 9.33 7.95 

cis-
methylisoeugenol 

1500 0.54 - 0.62 - 0.70 - 0.32 

elemicin 1561 0.32 0.48 0.75 0.51 0.58 0.01 0.37 

other 
compounds 

(Z)-hex-3-en-1-
olS 

< 900 - - 0.06 - - - - 

nonan-2-oneS 1094 - - 0.04 - - - - 

decanalS 1207 - - 0.03 - - - - 
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undecan-2-oneS 1295 - 0.17 0.22 - 0.16 - 0.12 

pentadecan-2-
oneS 

1699 - - 0.08 - - - 0.09 

hexadecanalS 1818 - - 0.11 - - - - 

total others   11.12 15.5 20.99 18.14 17.52 17.54 14.57 

 total:   92.85 92.29 92.52 98.59 94.48 99.87 92.28 

1Retention index on a MSD model 5975 C and HP-5MS; 2HD - hydrodistillation without pretreatment (negative 

control); 3HD-RE - hydrodistillation with reflux extraction pretreatment; hydrodistillation with reflux extraction 

pretreatment assisted with enzymes: 4HD-REX xylanase; 5HD-REC cellulase; 6HD-REP pectinase; 7HD-REPCX 

pectinase + cellulase + xylanase; 8HD-US hydrodistillation with ultrasonic pretreatment; 9(-) not detected; * - 

compounds confirmed by NMR, S - compounds identified with the standard. 

 

Table S3. Chemical composition of rosemary essential oils isolated by hydrodistillation with and without different 

pretreatments. 

 
Group Compoun

d 
RI1 % Total Peak Area 

m
on

ot
er

p
en

es
 

   HD2 HD-
RE3 

HD-
REX4 

HD-
REC5 

HD-
REP6 

HD-
REPCX
7 

HD-
US8 

monoterpene 
hydrocarbons 

α-pineneS 941 2.25 3.28 2.93 2.77 0.93 3.36 5.88 

camphene
S 

956 0.47 0.62 0.54 0.50 0.19 0.59 1.19 

verbenene
S 

962 -9 - 0.17 - - 0.19 0.35 

sabineneS 979 - - - - - 0.08 - 

β-pineneS 982 - 0.27 - - - 0.28 0.29 

β-
myrceneS 

992 - - 0.10 - - - - 

p-cymeneS 1030 0.01 0.42 0.42 0.01 0.02 0.15 1.03 

δ-car-3-
eneS 

1014 - 0.33 0.33 - - 0.21 0.51 

limoneneS 1034 0.01 0.58 0.57 0.02 0.18 0.25 1.49 

oxygenated 
monoterpenes 

1.8-
cineoleS 

1038 4.34 9.49 6.19 4.55 3.44 7.44 4.24 

linalool*S 1104 5.00 5.75 5.57 4.02 3.13 5.57 1.38 

filifolone 1105 - 0.38 0.47 - - 0.29 0.29 

α-thujoneS 1110 - 0.72 0.93 0.87 - 0.61 3.47 

β-thujoneS 1121 - 0.38 0.53 0.38 - 0.35 1.49 

chrysanthe
none 

1129 0.20 0.72 0.99 0.45 - 0.58 0.14 
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camphor*
S 

1149 15.38 13.82 17.58 12.77 3.73 11.56 9.01 

pinocarvo
ne 

1167 - 0.73 0.28 0.68 - 0.20 0.58 

borneol*S 1172 24.38 12.03 16.77 18.11 6.22 11.26 5.39 

isopinoca
mphone 

1178 0.69 1.52 1.89 1.28 - 1.15 0.64 

4-
terpineolS 

1182 1.00 1.70 1.31 0.90 0.97 1.24 0.52 

p-cymen-
8-olS 

1191 - - 0.38 0.37 - 0.24 - 

α-
terpineolS 

1195 5.04 4.17 3.73 2.81 3.60 3.34 0.83 

myrtenolS 1200 1.28 0.56 0.78 0.78 - 0.53 - 

homomyrt
enol 

1208 2.39 - - 1.39 0.19 1.05 0.23 

nerolS 1233 - - - - - 0.27 - 

geraniolS 1261 - - - - - 0.21 - 

bornyl 
acetateS 

1287 - 0.41 - - 0.33 0.23 0.47 

α-terpenyl 
acetateS 

1355 - 3.31 - - 3.46 2.38 - 

spathuleno
l 

1581 - 0.64 - - 3.81 1.28 - 

total 
monoterpenes 

  62.44 61.83 62.46 52.66 30.2 52.17 39.4
2 

se
sq

ui
te

rp
en

es
 

sesquiterpene 
hydrocarbons 

β-
elemeneS 

1393 - - - - 0.39 0.22 - 

trans-
caryophyll
eneS 

1421 1.53 2.84 2.00 0.76 1.28 1.47 0.56 

α-
muurolene 

1501 - - 0.22 - - 0.14 - 

α-
humulene 

1456 - 0.66 0.83 1.05 0.44 0.45 1.24 

α-guaiene 1441 - - - - - 0.11 - 

α-copaene 1378 - - 0.36 - - 0.13 - 

alloaroma
dendrene 

1462 - - - - 0.40 - - 

β-selinene 1488 - - - - - 0.13 - 

α-copaene 1378 - - 0.36 - - 0.13 - 
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α-
amorphen
e 

1478 - - 0.40 - - 0.13 - 

γ-cadinene 1515 0.01 0.43 0.49 0.02 0.32 0.28 0.02 

α-
calacorene 

1546 - - - - - 0.19 - 

germacren
e A 

1505 - 0.40 - - - - - 

δ-
cadineneS 

1525 0.81 1.22 1.31 0.50 0.83 0.60 0.69 

oxygenated 
sesquiterpenes 

berbenone
* 

1212 21.76 12.17 14.40 13.24 5.55 9.93 5.56 

spathuleno
l 

1581 - 0.64 - - 3.81 1.28 - 

caryophyll
ene oxide 

1584 - 0.67 - - 1.88 0.92 - 

veridifloro
l 

1594 - - 1.14 8.01 11.95 1.85 14.3
2 

α-
caryophyll
adienol 

1640 - - - 0.43 2.60 0.83 1.11 

α-cadinol 1646 - 0.63 0.47 - 1.21 0.82 - 

β-
eudesmol 

1654 - 0.84 - - 3.80 1.15 - 

t-muurolol 1658 - 1.54 0.19 1.76 6.31 1.84 0.13 

manool 2055 - 0.45 - 13.47 13.65 1.71 22.0
5 

total 
sesquiterpenes 

  24.11 23.53 21.81 39.24 56.43 25.1 45.6
8 

ot
he

rs
 

phenylpropane 
derivatives 

thymolS 1296 - - 0.22 - - 0.20 - 

carvacrolS 1307 - - - - - 0.32 - 

eugenolS 1363 - 5.70 - - 3.44 4.24 - 

methyleug
enolS 

1409 0.01 3.56 0.17 0.02 2.65 2.82 - 

elemicin 1561 - 0.46 - - 0.46 0.39 - 

other 
compounds 

oct-1-en-
3-ol 

983 - - 0.24 - - - - 

methyl 
jasmonate
S 

1651 - - 0.30 - - 0.62 - 

hexadecan
-1-olS 

1885 - - - - 0.23 0.13 - 

total others   0.01 9.72 0.93 0.02 6.78 8.72 0 
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 total:   86.56 95.07 85.2 91.92 93.41 85.99 85.1 

1Retention index on a MSD model 5975 C and HP-5MS; 2HD - hydrodistillation without pretreatment (negative 

control); 3HD-RE - hydrodistillation with reflux extraction pretreatment; hydrodistillation with reflux extraction 

pretreatment assisted with enzymes: 4HD-REX xylanase; 5HD-REC cellulase; 6HD-REP pectinase; 7HD-REPCX 

pectinase + cellulase + xylanase; 8HD-US hydrodistillation with ultrasonic pretreatment; 9(-) not detected; * - 

compounds confirmed by NMR, S - compounds identified with the standard. 
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Experimental details and analysis of nuclear magnetic resonance (NMR) analysis spectra 

The NMR spectra were recorded on a Bruker Avance 600 spectrometer using a 5-mm broad band probehead 
equipped with z-gradient coils, operating at 600.130 MHz for 1H and 150.903 MHz for 13C. All spectra were 
measured from CDCl3-d with tetramethylsilane (TMS) as the internal standard at 25 °C. Individual resonances 
were assigned on the basis of their chemical shifts, multiplicity, signal intensities, and by using correlation signals 
in the spectra of 2D NMR techniques: correlation spectroscopy (1H-1H COSY), total correlation spectroscopy (1H-
1H TOCSY), heteronuclear multiple quantum coherence (1H-13C HMQC) and heteronuclear multiple bond 
correlation (1H-13C HMBC).  

One-dimensional 1H and 13C NMR spectra were recorded at Bruker AV600 by using 32K and 64K data points 
and spectral widths of 12019 Hz and 39370 Hz for proton and carbon (APT) experiments, respectively. Digital 
resolution was 0.37 Hz and 0.60 Hz per point, respectively. The number of scans was 128–256 for 1H and ca. 
34000 for 13C APT spectra. Two-dimensional homonuclear 1H-1H COSY and 1H-1H TOCSY spectra were 
recorded by using 2048 points in f2 and 512 increments in f1 dimension. Increments were obtained by 8 and 24 
scans each, with 9615 Hz spectral width, and by using a relaxation delay of 1.0 and 1.5 s, respectively. The zero 
filling of f1 data was performed to 1024 points. The digital resolution was 4.69 and 18.75 Hz per point in f2 and 
f1 domains, respectively. TOCSY spectra were obtained with the mixing time of 60 ms. The inverse 1H-13C 
correlation experiments, HMQC and HMBC were recorded with 2048 points in f2 dimension and 256 increments 
in f1 dimension, and were subsequently zero-filled to 1024 points. For each increment, 128 (HMQC) and 256 
(HMBC) scans were collected, using relaxation delay of 1.0 s. The spectral widths were 9615 Hz (f2) and 36240 
Hz (f1), with the corresponding resolution of 4.69 and 141.48 Hz per point in f2 and f1 dimensions, respectively. 
In HMBC spectra, the additional delay of 65 ms was used for detecting the long-range C–H couplings. 

The atom signals of the most terpenes observed by GC-MS analysis in more than 5% of total peak area, were 
also obtained in recorded NMR spectra. Their assignation was made by signal chemical shifts and multiplicity in 
the 1H and 13C NMR spectra, and by the cross peaks in 1H-1H COSY, 1H-1H TOCSY and 1H-13C HMBC. Due to 
the large spin splitting within the molecules, some atom signals came in the proton spectra as very low intensity 
multiplet. The signal detection in spectra was also difficult by their large overlap in the higher magnetic field due 
to the similarity of the chemical structures of the observed molecules. As the result of that 1,8-cineole and 
α-terpineol could not be detected with certainty. The most useful for assignation were the long-range cross peaks 
in the HMBC spectra. Fig. 3 shows the spectra of rosemary (Fig. 3A), sage (Fig. 3B) and bay laurel (Fig. 3C) 
extracts with labelled atom signals of compounds found in the mixture. In the same figure, the structures of the 
compounds with the numbering used in NMR spectroscopy are presented. Atom signals of the linalool were fully 
assigned in the proton spectra because of the cross peaks found in HMBC: H-1, H-2, H-9 to C-3; H-5, H-8, H-10 
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to C-6; H-8, H-10 to C-7. In COSY spectrum its H-1 to H-2 cross peak was observed. Recorded TOCSY revealed 
H-4 ‒ H-5 ‒ H-6 spin system of the linalool. The methyleugenol atom signals were revealed also by HMBC cross 
peaks: H-5 to C-7; H-6 to C-2, C-4; H-7 to C-3, C-4, C-8, C-9; H-10 to C-2; H-11 to C-1. The COSY experiment 
revealed three vicinal couplings in molecule: H-5 to H-6; H-7 to H-8; H-8 to H-9. Atom signals of camphor were 
observed thanks to the deshielded C-2 atom (219.5 ppm) in the 13C APT spectra, and HMBC cross peaks observed 
between: H-3b to C-2, C-5, C-1; H-8, H-9 to C-7; H-10 to C-2, C-6, C-7. The α-terpenyl acetate signals were 
obtained because of the acetyl group signals: methyl H-12 at 1.97 ppm and carbonyl C-11 at 170.8 ppm. In 
recorded HMBC spectra cross peaks between: H-2 to C-4, C-7; H-9, H-10 to C-4, C-8, C-10, were also found. 
Chemical shifts and multiplicities of other α-terpenyl acetate signals (H-3a, H-3b, H-4, H-5a, H-5b, H-6, H-7) in 
our spectra agree with literature data [1]. Signals of the α- and β-thujone were in recorded spectra confirmed by 
cross peaks in COSY and/or TOCSY spectra. For α- thujone: H-5 to H-6 endo and H-6 exo; H-6 endo to H-6 exo; 
H-6 endo and H-6 exo to H-7; H-4 to H-10, couplings were found.  For β-thujone: H-6 endo to H-6 exo and H-6 
endo and H-6 exo to H-7 were observed. Thujones signals were also confirmed by literature data [2]. All atom 
signals of berbenon, borneole, manool and veridiflorol were not observed in recorded NMR spectra, but each of 
the above molecules have some signals that confirmed their presence in the spectra of the investigating mixtures. 
Berbenone was assigned because of its characteristic C-2 (170.2 ppm), H-3/C-3 (5.73 ppm, 121.6 ppm), C-4 (204.2 
ppm) and H-1/C-1 (2.08 ppm, 49.4 ppm) atom signals in 1H and 13C NMR spectra. Cross peaks found in the HMBC 
spectra were between: H-1 to C-4; H-5 to C-2, C-4; H-8 to C-2. At borneol molecule, H-2 atom signal at 3.63 ppm 
was easily detected because it does not overlap with other signals. In TOCSY spectra, H-2 to H-3 cross peak was 
observed, as well as methyl H-10 to C-2 in HMBC spectra. At manool molecule deshielded 1H atom signals of H-
8, H-14, H-15a and H-15b were found. In COSY spectra H-14 to H-15 cross peak was observed. In HMBC spectra 
H-14 and H-15 to C-13 cross peaks were found. Other signals were found by comparison with literature data [3]. 
Veridiflorol was also only partially assigned, since all 1H atom signals fall in the range of 0.8 to 1.9 ppm where 
they overlap with the other molecule signals of the mixture (e.g. α-thujone and camphor). According to the signal 
intensity and coupling constant (6.5 Hz) the one at 0.93 ppm was attributed to veridiflorol methyl H-15 atom, and 
the cross peaks of H-5 to H-6 and H-4 to H-15 atoms in the COSY spectrum was detected [4]. The observed NMR 
spectra were compared with data published in the Biological Magnetic Resonance Data Bank database where 
possible [5]. 
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Table S1. Volatile composition of essential oils determined by GC-MS.  

Compound  RI1  
% total peak area  

Rosemary  Bay laurel  Sage  
(Z)-hex-3-en-1-ol  < 900  0.03  -  -  
cis-salvene  < 900  -  -  0.14  
tricyclene  929  0.16  -  0.20  
α-thujene  932  0.03  0.23  0.08  
α-pinene  941  10.79  2.48  2.96  
camphene  956  2.41  0.33  5.15  
sabinene  979  0.04  4.90  0.33  
oct-1-en-3-ol  981  0.27  -  0.01  
β-pinene  982  0.58  2.28  1.50  
octan-3-one  990  0.15  -  -  
β-myrcene  992  1.10  0.39  0.36  
α-phellandrene  1010  0.25  0.06  0.04  
δ-car-3-ene  1014  1.72  0.10  -  
α-terpinene  1021  0.26  0.23  0.12  
p-cymene  1030  1.82  0.36  0.49  
limonene  1034  3.36  0.87  1.26  
1.8-cineole  1038  7.29  26.79  12.53  
γ-terpinene  1063  0.30  0.62  0.24  
α-terpinolene  1091  0.65  0.10  0.18  
linalool  1104  4.37  6.95  1.13  
filifolone  1108  0.48  -  -  
α-thujone  1110  0.80  0.37  20.34  
β-thujone  1121  0.11  0.08  1.87  
chrysanthenone  1131  1.78  -  -  
trans-pinocarveol  1147  0.19  -  -  
camphor  1149  11.71  0.39  23.86  
pinocarvone  1169  0.33  -  -  
borneol  1172  8.94  0.91  4.14  
isopinocamphone  1181  1.67  -  -  
4-terpineol  1182  1.02  2.25  0.61  
p-cymen-8-ol  1191  0.27  -  -  
α-terpineol  1195  2.05  4.12  0.34  
myrtenol  1201  0.48  -  -  
nopol  1209  1.12  -  -  
berbenone  1212  6.11  -  0.23  
trans-carveol  1224  0.09  -  -  
nerol  1233  -  0.28  -  
β-citronelol  1234  0.16  -  -  
geraniol  1261  0.15  -  -  
3-phenylpropenal  1275  -  0.06  -  
bornyl acetate  1287  0.80  0.66  1.16  
trans-sabinyl acetate  1294  -  -  0.07  
undecan-2-one  1295  -  0.10  -  
thymol  1296  0.11  -  -  
carvacrol  1307  0.25  -  -  
α-terpenyl acetate  1355  0.17  13.18  0.48  
eugenol  1363  0.23  4.37  0.07  
α-ylangene  1373  0.18  0.14  -  
α-copaene  1378  0.52  0.05  -  
β-cubebene  1391  -  0.03  -  
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β-elemene  1393  -  0.83  -  
methyleugenol  1409  0.34  8.79  0.37  
α-gurjunene  1413  -  0.10  -  
trans-caryophyllene  1421  2.84  1.81  1.74  
α-guaiene  1441  -  0.28  -  
guaia-3.7-diene  1446  -  0.12  -  
α-humulene  1456  1.24  0.40  3.17  
alloaromadendrene  1462  0.04  0.17  0.18  
α-amorphene  1478  -  0.07  -  
γ-muurolene  1481  0.52  -  -  
germacrene D  1482  -  0.28  -  
β-selinene  1488  -  0.40  -  
ar-curcumene  1489  0.07  -  -  
β-eudesmene  1490  0.10  -  -  
bicyclogermacrene  1496  -  0.91  -  
zingiberene  1498  0.30  -  -  
cis-methylisoeugenol  1500  -  0.25  -  
α-muurolene  1504  0.25  -  -  
α-bulnesene  1509  -  0.55  -  
β-bisabolene  1513  0.19  -  -  
γ-cadinene  1515  0.53  0.36  -  
δ-cadinene  1525  1.17  0.34  0.07  
trans-α-bisabolene  1545  -  0.14  -  
α-calacorene  1546  0.13  -  -  
elemicin  1561  -  0.33  -  
spathulenol  1581  0.04  1.07  -  
caryophyllene oxide  1584  1.18  0.84  -  
veridiflorol  1594  2.57  -  10.31  
α-cadinol  1646  0.27  -  -  
β-eudesmol  1654  -  0.50  -  
α-bisabolol  1689  0.27  -  -  
hexadecan-1-ol  1886  0.06  -  -  
farnesyl acetone  1924  0.19  -  -  
manool  2055  2.25  -  1.42  
Total %    89.6  92.2  97.2  

1Retention index on HP-5MS  
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Table S1. Polyphenol composition of propolis samples determined by UPLC-MS2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

(-) – not detected 
 
Table S2. Volatile composition of propolis samples determined by GC-MS. 

Group Compound RI 

Samples (% total 
peak area) 

P1 P2 

monoterpene hydrocarbons 

α-pinene 943 - 1.11 
camphene 958 - 1.41 
β-pinene 984 - 0.55 

β-myrcene 995 - 0.40 
p-cymene 1031 - 0.80 
limonene 1034 - 1.66 

oxygenated monoterpenes 

1,8-cineole 1037 - 4.55 
α-thujone 1101 - 6.79 
β-thujone 1113 - 5.08 
camphor 1152 - 2.78 
menthone 1162 - 4.07 

neoisomenthol 1165 - 0.78 
menthol 1183 - 3.88 
pulegone 1237 - 0.07 
carvone 1250 - 0.64 

piperitenone 1252 - 0.19 
bornyl acetate 1288 - 0.47 

group compound 
P1 P2 

µg/mL 

flavonols 

rutin 2.19 ± 0.01 1.84 ± 0.03 
K-3-R - 2.96 ± 0.14 
Q-3-G - 0.45 ± 0.04 
K-3-G - 11.44 ± 0.07 

Q-dimetileter 0.19 ± 0.01 0.34 ± 0.02 
ishoramnetin 0.24 ± 0.03 0.40 ± 0.01 

rhamnetin 1.22 ± 0.03 0.77 ± 0.02 
galangin 6.96 ± 0.13 7.00 ± 0.14 

total flavonols 10.80 25.20 

flavones 

apigenin 182.59 ± 1.61 119.53 ± 2.77 
chrysin 734.27 ± 1.97 838.38 ± 3.97 
luteolin 30.10 ± 0.31 19.11 ± 0.89 

total flavones 946.97 977.01 

flavanones 

sakuranentin 0.48 ± 0.03 - 
naringenin 1.77 ± 0.10 1.09 ± 0.01 

pinocembrin 34.74 ± 0.02 15.78 ± 0.46 
pinobanksin 0.26 ± 0.01 0.11 ± 0.01 

total flavanones 37.25 16.98 

phenolic acids 
and derivatives 

ferulic acid 23.08 ± 0.33 39.89 ± 1.31 
isoferulic acid 24.82 ± 1.20 49.90 ± 1.94 

caffeic acid 5.41 ± 0.03 4.75 ± 0.04 
p-coumaric acid 27.31 ± 1.50 43.20 ± 0.87 
cinnamic acid 30.44 ± 1.63 58.20 ± 0.41 

CAPE-caffeic acid phenylethyl ester 2.30 ± 0.01 2.95 ± 0.08 
p-HBA acid 2.32 ± 0.23 2.49 ± 0.14 

total phenolic acids and derivatives 115.69 201.39 
others vanilin 39.15 ± 0.52 22.44 ± 0.83 



107 

methyl acetate 1289 - 4.21 

sesquiterpene hydrocarbons 

α-ylangene 1375 - 0.48 
α-copaene 1378 1.74 - 

β-bourbonene 1387 - 0.72 
α-cedrene 1408 - 0.22 

trans-β-caryophyllene 1422 - 1.60 
α-guaiene 1434 - 2.20 

α-humulene 1456 - 2.70 
aromadendrene 1463 - 1.18 
α-amorphene 1479 - 1.42 
ar-curcumene 1485 1.41 1.38 

β-selinene 1489 - 1.37 
α-muurolene 1502 1.80 1.88 
γ-cadinene 1517 2.75 2.32 

cis-calamenene 1525 6.84 - 
δ-cadinene 1526 - 4.94 
α-cadinene 1540 - 0.38 

α-calacorene 1546 - 1.27 

oxygenated sesquiterpenes 

caryophyllene oxide 1585 - 0.14 
γ-eudesmol 1636 0.26 - 
β-eudesmol 1654 5.05 - 
α-eudesmol 1657 5.28 - 

others 

ethyl acetate ˂ 900 - 3.18 
3-methylbut-2-en-1-ol ˂ 900 - 0.23 

benzaldehyde 970 2.38 1.05 
benzyl alcohol 1046 4.99 2.15 

2-phenylethanol 1121 4.60 0.02 
benzoic acid 1162 12.97 - 

ethyl benzoate 1169 4.77 4.02 
ethyl octanoate 1198 - 0.67 
ethyl nonanoate 1292 - 0.87 

2-methoxy-4-vinylphenol 1312 - 0.32 
ethyl benzenepropanoic acid 1346 3.23 2.34 

ethyl decanoate 1391 - 1.73 
vanillin 1407 2.78 - 

(E)-ethyl cinnamate 1464 1.58 0.78 
ethyl dodecanoate 1595 18.91 7.99 
benzyl benzoate 1767 3.92 0.31 

ethyl tetradecanoate 1794 3.73 0.72 
RI - Retention index on a MSD model 5975 C and HP-5MS 
(-) – not detected 
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Figure S1. Mycelial growth inhibition curves. 
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Figure S2. Zoospore germination inhibition curves. 
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Figure S3. Inhibition of A. astaci zoospore germination with chrysin. 

 

 

       A)                                                                                   B) 

 

Figure S4. Inhibition of A. astaci (A) and S. parasitica (B) zoospore germination with pinocembrin. 
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Figure S5. 2D and 3D structure showing endochitinase protein of Aphanomyces astaci mycelium 
interacting with chrysin (A-B), cinnamic acid (C-D), pinocembrin (E-F), and apigenin (G-H). 
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Figure S6. 2D and 3D structure showing trypsin proteinase of Aphanomyces astaci mycelium interacting 
with chrysin (A-B), cinnamic acid (C-D), pinocembrin (E-F), and apigenin (G-H). 



113 

 

Figure S7. 2D and 3D structure showing laminlike protein of Saprolegnia parasitica cysts interacting 
with chrysin (A-B), cinnamic acid (C-D), pinocembrin (E-F), and apigenin (G-H).  
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Figure S8. 2D and 3D structure showing thrombospondin protein of Saprolegnia parasitica cysts 
interacting with chrysin (A-B), cinnamic acid (C-D), pinocembrin (E-F), and apigenin (G-H).  
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Figure S9. 2D and 3D structure showing host targeting protein 1 of Saprolegnia parasitica cysts 
interacting with chrysin (A-B), cinnamic acid (C-D), pinocembrin (E-F), and apigenin (G-H). 



116 

 

Figure S10. 2D and 3D structure showing V type proton ATPase of Saprolegnia parasitica mycelium 
interacting with chrysin (A-B), cinnamic acid (C-D), pinocembrin (E-F), and apigenin (G-H).  
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