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1. INTRODUCTION 

Lignocellulose-based biomass, although complexed and degradation-reluctant, is also 

the most abundant renewable polymer on the Earth and as such of tremendous interest for 

development of sustainable and environmental friendly bioprocesses (Langston et al, 2011; 

Borisova et al., 2015; Hemsworth et al., 2015). Fungi and bacteria are the main actors in 

degradation of such robust material since they secrete a various number of lignocellulose-

degrading enzymes (Tan et al., 2015). Among those enzymes is cellobiose dehydrogenase, an 

extracellular flavocytochrome, produced by white and brown rot fungi as well as 

phytopathogenic and saprotrophic fungi (Ludwig et al., 2010, Harreither et al., 2011). 

Catalytic properties of CDHs depend on their origin, although they share a common bipartite 

structure containing b-type cytochrome domain connected to a flavodehydrogenase domain 

via flexible linker (Hallberg et al., 2002; Harreither et al., 2012). 

As a major fraction of the lignocellulose-degrading group of enzymes, CDH is often 

secreted by fungi in sufficient amounts, but cultivation of its natural producers, as well as 

protein isolation and purification are difficult and time consuming. Another approach is to 

clone cdh genes in different well-known expression hosts which enable faster, more reliable 

and more efficient enzyme production as well as the possibility of genetic manipulations 

(Ludwig et al., 2013). Thus, the first aim of this work was the transformation of the gene for 

Corynascus thermophilus CDH in Aspergillus niger, as well as to express, purify and 

characterize the enzyme. 

Since CDHs exhibit some unique catalytic properties, a number of significant 

applications have been introduced. Analytical CDH-based biosensors, different assays for 

qualitative and quantitative analyses of substrates, usage in biodegradation processes etc. are 

just few examples. In this work we have also proposed a new interesting application of 

different CDH variants in organic industry as a part of cascade reaction. This reaction is 

bioconversion of ethylbenzene to phenylethanol, and beside CDH, another enzyme, unspecific 

peroxygenase (UPO) is crucial for this reaction. Thus, we made an effort to establish efficient 

two-phase bioconversion of ethylbenzene to phenylethanol using UPO and CDH and to 

characterize these enzymes. 



  2. Theoretical part 
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2. THEORETICAL PART  

2.1. LIGNOCELULLOSIC BIOMASS  

 

The most abundant raw material on the Earth, lignocellulosic biomass, is also the most 

attractive in terms of development of different ecologically and economically sustainable 

bioprocesses (Nigam and Pandey, 2009; Philippoussis, 2009; Langston et al., 2011). The main 

reasons for such great interest worldwide are its renewability and abundance as well as the 

fact it does not compromise food or feed production (Monlau et al., 2013). 

Two main components of lignocellulosic biomass, cellulose (40 - 50%) and 

hemicellulose (25 - 35%) are associated together and embedded in the third component, lignin 

(15 – 20 %) (Hallberg et al., 2002; Baček et al., 2012). Due to different ecological and genetic 

factors these percentages differ from one to another raw material (Sluiter et al., 2010). 

Cellulose is a linear polymer of D-glucopyranose linked by β-1,4-glycosidic bonds. 

Hydroxyl groups interact with each other, forming hydrogen bonds which enable connecting 

cellulose chains into a crystal structure (Palonen, 2004; Zamocky et al., 2006; Turner et al., 

2007). 

The chemical composition and structural properties of heteropolysaccharides, known 

as hemicelluloses, depend on plant species, type of plant tissue and its developmental stage. 

Hemicelluloses differ by the main sugar residue in the backbone, such as most common 

xylans and mannans, and other like glucans. Xylan is predominant form of hemicellulose in 

most plants. Its backbone is formed of -(1,4)-linked D-xylopyranose monomers while 

different groups can be present in the side chains (Wyman et al., 2005; Zamocky et al., 2006; 

Turner et al., 2007).  

In general, lignin is composed of a large group of different aromatic polymers. 

Specific alcohols like coniferyl-, sinapyl- and p-coumaryl alcohols are precursors of lignin 

biosynthesis. Lignin is one of the most degradation-challenging materials on the Earth and has 

a plant protective role. As such it is the most limiting factor in lignocellulose biomass 

utilization (Henriksson et al., 2000a; Vanholme, 2010). 
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2.2. FUNGI AND THEIR ROLE IN DEGRADATION OF LIGNOCELLULOSE 

 

 Fungi together with bacteria play a great role in carbon cycle, by recycling and 

reusing carbon and in that way making life on Earth sustainable (Langston et al, 2011; Tan et 

al., 2015). Making a large taxonomic group, fungi display great phenotypic diversity as a 

reflection of different environment adaptions. As a result of these variations, which enable 

them growth on lignocellulosic material, specific lignocellulose-degrading enzymes are 

secreted (Kracher, 2016). 

Important enzymes producers are brown and white rot fungi, as well as composting 

and plant pathogenic fungi from two most significant phyla Basidiomycota and Ascomycota 

(Zamocky et al., 2006; Ludwig et al, 2010). Besides the stated ones, several anaerobic species 

from ruminant gastrointestinal tracts are capable of cellulose degradation (Dashtban et al., 

2009). 

Common activities of different enzymes lead to lignin degradation. Being unable to 

penetrate into lignocellulosic matter, peroxidases act by generating molecular radicals which 

cause lignin oxidation. Other efficient enzymes are laccases which include redox mediators 

that are able to diffuse through inner structure to nonphenolic compounds, causing their 

oxidation (Henriksson et al., 2000a; Zamocky et al., 2006; Kracher, 2016). 

Since the composition of hemicelluloses varies among different plants, different 

enzymes are necessary for hydrolysis of these complexed structures. Among these enzymes 

are xylanases which hydrolyze xylan into oligomers and β-xylosidase which continues 

degradation of oligomers into xylose. Also β-mannanases, arabinofuranosidases and α-L-

arabinanases take part in hemicellulose-degrading process, depending whether the 

composition of hemicellulose is mannan-based or arabinofuranosyl-containing (Dashtban et 

al., 2009). 

For years, efficient degradation of cellulose had been associated to hydrolytic 

enzymes; however, synergy of oxidative enzymes that enhances the cellulose degradation was 

recently introduced (Borisova et al., 2015; Tan et al., 2015). During the hydrolytic 

degradation process chain-cleaving endocellulases (endoglucanases) create chain breaks 

providing many reaction points for exocellulases' (cellobiohydrolases) activity. Cellobiose is 

then released as the main product and gets converted to glucose monomers by β-glucosidase 

(Zamocky et al., 2006; Turner et al., 2007; Langston et al., 2011; Morgenstern et al., 2014; 

Schulz, 2015; Tan et al., 2015; Kracher, 2016). Recently, the role of oxidative enzymes in the 
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biomass deconstruction has been recognized. Cellobiose can also be oxidized to 

cellobionolactone by cellobiose dehydrogenase. During this process two electrons are 

obtained which are further transferred to lytic polysaccharide monooxygenase (LPMO). 

LPMOs are then able to activate molecular oxygen and oxygenate cellulose, leaving chain 

breaks. In that way these enzymes boost activity of well-known cellulases which contributes 

to generally more efficient cellulose degradation (Morgenstern et al., 2014; Borisova et al., 

2015; Tan et al., 2015; Schulz, 2015; Kracher, 2016).  

2.3. CELLOBIOSE DEHYDROGENASE 

 

The fungal flavocytochrome enzyme cellobiose dehydrogenase (CDH; EC 1.1.99.18) 

is an extracellular oxidoreductase produced by wood-degrading basidiomycetes and 

ascomycetes as well as phytopathogenic species (Ludwig et al., 2010; Kracher et al., 2015). 

Its secretion by various different fungi, under cellulolytic conditions, indicates its important 

role in wood decomposing process (Henriksson et al., 2000b; Hallberg et al., 2002; Pricelius 

et al., 2009; Ludwig et al., 2010; Harreither et al., 2011; Ludwig et al., 2013). Although the 

catalytic properties of CDHs depend on their origin, the common feature of enzymes 

belonging to CDH family is the structure. They are usually produced as monomers with two 

domains, the dehydrogenase domain (DH) with nonconvalently bonded FAD and the 

cytochrome domain (CYT) which contains haem b as a prosthetic group. A flexible, papain 

sensitive, 20-30 residues long linker connects these domains (Tasca et al., 2011; Harreiether, 

2012; Ludwig et al., 2013). Depending on the degree of glycosylation, the molecular mass of 

the enzyme is within the range from 85 up to 101 kDa (Zamocky et al., 2006; Ludwig et al., 

2013). 

The catalytic reaction takes place at the larger flavodehydrogenase domain; a 

carbohydrate is oxidized to corresponding lactone wherein FAD is reduced to FADH2. The 

smaller cytochrome domain behaves as built-in mediator, as it transfers electrons to its redox 

partner LPMO. This process is believed to clarify the in vivo function of CDH. Another 

possible way of FADH2 reoxidation is the electron transfer to different one- or two-electron 

acceptors such as iron ions, quinones etc. (Ludwig et al., 2010, Ludwig et al., 2013, Felice et 

al., 2013; Tan et al., 2015). 
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2.3.1. Structure 

With their complex designed structure, CDHs are unique as extracellular enzymes 

(Kracher et al., 2015).  The crystallization of full-length CDHs remained unsuccessful for a 

long time. Just recently, Tan et al. have achieved to crystallize full length CDHs from 

Myriococcum thermophilum and Neurospora crassa. Until then crystal structure of only 

proteolytically separated domains from Phanerochaete chrysosporium CDH have been known 

(Tan et al., 2015; Kracher, 2016). Catalytic properties of both separated dehydrogenase 

domain and full-length CDH have been studied in this thesis. 

The reported CYT crystal structure from Phanerochaete chrysosporium exhibits 

resemblance to the fold of the antibody Fab VH domain. The 190 residues-long fragment has a 

-sandwich fold with an average diameter of 35 Å, made by two antiparallel, five and six-

stranded β-sheets (Rotsaert et al., 2003; Zamocky et al., 2006; Ludwig et al., 2010; Ludwig et 

al., 2013; Schulz, 2015). On the surface of the domain there is a hydrophobic binding site for 

heam b, which is hexacoordinated by histidine and a methionine. The redox potential of haem 

b in CYT is  relatively low  (100-160 mV vs.SHE; pH 7.0) as it is believed to be a 

consequence of specific Met/His ligation (Zamocky et al., 2006; Ludwig et al., 2013). That 

ligation is very uncommon among heam proteins, but it is well conserved in CDH's CYT 

domain regardless of CDH's origin. This fact indicates high importance in extracellular 

electron transfer leading to a greater understanding of the in vivo function of CDH (Hallberg 

et al., 2002; Ludwig et al., 2010; Ludwig et al., 2013; Kracher , 2016). 

 
Formerly, the dehydrogenase domain of CDH is believed to be a separate enzyme. 

Forms of CDH without cytochrome domain had previously been found, probably as a result of 

fungal proteases activity (Zamocky et al., 2006; Ludwig et al., 2010). This was supported by 

the fact that the oxidation of an electron donor takes place at DH fragment where at the same 

time FAD is reduced to FADH2 and can be reoxidized without cytochrome domain 

(Henriksson et al.2000b; Hallberg et al.,2002; Zamocky et al., 2006). 

In 2002 Hallberg et al. determined the crystal structure of DH domain from 

Phanerochaete chrysosporium. Based on the sequence similarity DH belongs to a large family 

of glucose-methanol choline (GMC) oxidoreductases. The peanut-shaped, 540-residue large 

DH domain has a p-hydroxybenzoate hydroxylase (PHBH)-like fold. The structure reveals a 

flavin-binding subdomain of / type and a substrate-binding subdomain as seven-stranded 
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-sheets with six helices. The FAD-binding domain features so called Rossman-fold motif, 

characteristic for FAD or NAD-dependent proteins. The 335 residues-large substrate-binding 

subdomain and flavin-binding domain at their interference form a funnel-shaped tunnel, 

which leads to well buried active site (Hallberg et al, 2002; Zamocky et al., 2006; Schulz, 

2015).  

The DH domain of some ascomycete CDHs also contain a separate carbohydrate-

binding module (CBM) connected the DH (Schulz, 2015). 

 
The full-length crystal structures of two CDHs reported by Tan et al. played a major 

role in efforts to understand interactions between CYT and DH domain. They reported a 

shielded inter-domain electron transfer (IET) from DH domain to the CYT in CDH from 

Myriococcum thermophilum. Crucial interactions for efficient IET are those of heam b's 

propionate A in CYT with the DH active site. The way the CYT and DH domains are 

arranged is a closed state with an edge-to-edge distance of 9 Å. The distance fits within the 

indispensable 14 Å limit for an efficient IET. A channel leading from the protein surface to 

the active site provides an opportunity for the substrate to enter and the product to exit the 

active site, even while CDH remains in the closed IET-competent state (Figure 1). Besides 

this closed state, MtCDH may be present in different conformational states, such as the, so 

called, open state since there is no domain' association. This state is necessary for CDH's in 

vivo function as it allows the interaction between the CYT domain and LPMO, the final 

electron acceptor (Tan et al., 2015; Schulz, 2015). The in vivo function will be further 

discussed in the following chapters.  
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Figure 1. MtCDH in the closed state shown as a ribbon drawing (adapted from Tan et al., 

2015). 

 

 

 

 
 2.3.2. Classification of CDH 

 

Based on phylogenetic analyses of all known cdh genes, the heterogeneous CDH 

enzyme family is separated into several branches. The branch of the class I CDH represents 

basidiomycetous CDHs and single copies of cdh genes in their genomes are discovered. Class 

II consists of more complex gene sequences of ascomycetous origin with up to three copies in 

their genome. A common ancestor of these two phyla probably existed formerly, since among 

all CDHs, there is a high perseverance of CYT sequence with characteristic His/Met iron 

coordination. Class II is further divided into two subclasses IIA and IIB according to the fact 

whether CDH contains a type one carbohydrate-binding module, approximately 30 residue-

long (CBM) or not (Schulz, 2015). 

An existence of a third class of CDHs was proposed in 2008 but to this day no CDH 

from this class has been characterized (Harreither et al., 2011; Ludwig et al., 2013; Kracher , 

2016). The classification of the CDH family enzymes can be seen in Figure 2. 
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An attempt of heterologous expression of CDH III from Aspergillus oryzae in 

Aspergillus niger has also been a part of this thesis.  

The CDH origin defines its characteristics such as sequence length, substrate 

specificity, pH and temperature optima etc. (Schulz, 2015). In general, CDHs of 

basidiomycetous origin display optimum activity in mesophilic conditions and mostly acidic 

pH values. Ascomycetous CDHs are highly active within different temperature extremes and 

pH range. These characteristics are probably consequences of the adaption to the natural 

habitats of fungi (Harreither et al, 2011). 

 



 

9 

 

 

Figure 2. Phylogenetic tree of 56 CDH protein sequences. Basidiomycetous sequences are in 

class I, and ascomycetous CDHs are divided into class II and class III.  So far isolated CDHs 

are marked in gray shading (adapted from Harreither et al, 2011). 
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As has already been stated, the substrate spectrum of CDHs depends on their origin. β-

1,4 interlinked saccharides are preferable substrates for all CDHs. CDH displays highest 

catalytic efficiencies for β-D-cellobiose. Comparing kinetic constants for cellobiose between 

class I and class II CDHs, turnover numbers (kcat, s
-1) appear to be higher for class I CDHs but 

the affinity for cellobiose is lower (high KM values). Although ascomycetous CDHs are less 

discriminating against lactose, maltose and glucose in contrast to class I, the catalytic 

efficiency is not as high as for the natural substrate cellobiose (Schulz, 2015; Kracher, 2016). 

Several amino acids in the substrate-binding subdomain, such as the conserved Glu in 

class I CDHs and Asn in class II CDHs at position 279, seem to play a major role in substrate 

specificity. Furthermore, class I CDHs have a very specific cellulose-binding site at the DH 

domain. None of class II CDHs has that site, but one subclass has a carbohydrate-binding 

module. Lacking this module, CDHs from the other subclass are not able to bind to cellulose, 

but they demonstrate a broad substrate spectrum (Harreither et al., 2011). 

Different pH profiles between basidiomycetous and ascomycetous CDHs are a 

reflection of the adaption to different environment. Basidiomycetes seemed to be adjusted to 

acidic environmental conditions since secreted CDHs showed pH optima between pH 3.5 and 

4.5. Based on their pH profiles with cyt c assay, class II CDHs are divided into three groups, 

acidic, intermediate and neutral/alkaline. A pH optimum about pH 5.0 and tight pH profile are 

characteristic for the first group. Although members of the second group have also acidic pH 

optima, they display broad pH working range as they keep high activity at pH 7.5. The last 

group exhibit pH optima in neutral or alkaline pH area. Some CDHs, such the one from 

Corynascus thermophilus, have different pH optimum depending on activity assay used. Thus 

pH optimum for the DCIP assay is at 5.0, while for the cyt c is at pH 7.5 (Harreither et al., 

2011; Schulz, 2015). 

 

2.3.2. Electron transfer 

2.3.2.1. In vivo function 

Cellobiose dehydrogenase was first reported in 1974 and since then scientists have 

been discussing its in vivo function (Kracher, 2016). Among different hypothesis, the one 

describing a Fenton type reaction in which CDH degrades lignocellulosic biomass by 

introducing highly reactive hydroxyl radicals was the most accepted for a long time. To be 

more specific, electrons obtained from oxidation of carbohydrates reduce one electron 

acceptors such as Fe3+. These reduced species generates hydroxyl radicals in the next reaction 
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with hydrogen peroxide (Henriksson et al., 2000b; Zamocky et al., 2006; Ludwig et al., 2010; 

Harreither et al., 2011; Langston et al., 2011). 

Today, most of recent publications support the idea that CDHs provide electrons for 

copper-dependent lytic polysaccharide monooxygenases. The rate of this interenzyme 

electron transfer goes far beyond the rate of the mentioned Fenton reaction (Hemswort et al, 

2015; Kracher et al., 2016). For example, in the catalytic step, oxidation of cellobiose to 

cellobiono-1,5-lactone leads to reduction of FAD to FADH2. During re-oxidation to FAD 

electrons are transferred by two internal transfer steps via CDH's cytochrome domain to 

LPMO. These electrons reduce Cu2+to Cu1+ and in that way initiate LPMO action. Reduced 

LPMO catalyzes the oxidative degradation of all major polysaccharides (Morgenstern et al., 

2014; Hemswort et al, 2015; Kracher et al., 2016). 

2.3.2.2. In vitro electron transfer 

 
CDH belongs to a limited number of oxidoreductases which are, even in their wild-

type form, capable of direct electron transfer between the enzyme and an electrode. According 

to the bioelectrochemical properties of the oxidoreductases, they are characterized as, so 

called, extrinsic or intrinsic redox enzymes (Ludwig et al., 2013). For the intrinsic ones, 

several different conditions for direct electron transfer must be fulfilled. In general, the 

distance between the site of catalytic reaction and the electrode surface must be short enough 

to enable efficient electron pathway. In the electron transfer pathway from extrinsic enzymes 

to electrodes, another enzyme is often included. This enzyme acts as a mediator between the 

active site and a surface area exposed to electrode. If we have in mind CDH's structure, the 

fact that CDH acts as extrinsic enzyme is clear. From DH domain, the catalytic site, electrons 

are shifted via built-in mediator, CYT domain, to an electrode (Ludwig et al., 2013). 

After the reaction on DH, electrons do not have to be forwarded to natural acceptors. 

In fact, reduced FADH2 can be reoxidized to FAD by different two or one electron acceptors, 

meaning that this process does not have to be cytochrome-mediated (Tasca et al., 2011). 

Electrons can be donated directly to the electrode, but this is doable only for a few CDHs at 

acidic pH values because FAD is buried too deep in the DH domain. Another possibility for 

this process is mediated electron transfer using two electron acceptors, quinones or osmium 

containing polymers. By the laws of electrochemistry, these mediators have to have higher 

redox potential but they also need to have appropriate size so they can access the well 

shielded cofactor FAD (Schulz, 2015). 
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Furthermore, CDHs were formerly described as oxidases, since DH can reduce oxygen 

to hydrogen peroxide. A number of scientists reported that rate of this reaction was very low. 

Improvements were observed with higher pH values, comparing to one electron acceptor, 

CYT, but not with two electron acceptors such as the one stated above. These facts, especially 

the ability of CDHs to undergo DET via internal electron transfer to CYT are used in different 

applications of CDHs which will be further discussed in following the subchapter. To be more 

precise, all CDHs' properties are considered in various possible applications (Schulz, 2015). 

2.3.3. Applications 

2.3.3.1. Biosensors 

Analytes from wide substrate spectrum or wide electron acceptors spectrum are 

usually subjects of CDHs' application (Table 1) (Ludwig et al., 2010, Ludwig et al., 2013). 

With higher concentration of substrate more electrons are obtained which results with a higher 

current increasement. Opposite to that, detection of electron acceptors results with the 

inversely proportional ratio between the catalytic current and the concentration of analyte 

(Schulz, 2015). 

To this day, the most important CDH biosensors are designed for detection of 

disaccharides cellobiose and lactose as well as monosaccharide glucose. A CDH biosensor for 

the detection of cellobiose enables the measurement of the cellobiohydrolase activity on 

insoluble cellulose, since the reaction product, cellobiose is subjected to CDH oxidation. 

However, cellobiose causes substrate inhibition because of which lactose is used as standard 

in these measurements (Ludwig et al., 2013). 

Furthermore, very sensitive lactose sensors have found a place in the dairy industry. 

Depending on many factors such as CDH's origin, sensors have displayed different detection 

ranges. Among different approaches for the development, a combination of thermometric and 

amperometric methods resulted in very reliable sensors. Also a DET working mode sensor 

was recently developed. This kind of sensor is used in measuring time-consuming release of 

lactose from different drugs. Tracking the release of a widely used filling material in drugs, 

lactose, leads to better understanding of drug's active component releasement (Knöös et al., 

2014). 

A third generation glucose biosensor is based on class II CDHs' ability to oxidize 

glucose. Although the catalytic efficiency of glucose oxidation is not as high as the one for 

lactose or cellobiose, it is high enough for the construction of biosensors. Unfortunately, the 

number of people suffering from diabetes is increasing. One of the most important parts of 
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efficient disease treatment is the reliable measurement of blood sugar levels. Previously 

developed biosensors are usually based on enzymes like glucose oxidases or glucose 

dehydrogenases and a redox mediator. Direct electron transfer between intrinsic enzyme as 

glucose oxidase and an electrode is strongly disfavored which is not case for CDH. Moreover, 

this allows the development of oxygen-nondependent or redox mediators-nondependent 

glucose biosensor. As the most promising candidate for such biosensor, is the main topic of 

this thesis, CDH from Corynascus thermophilus. The CtCDH sensor developed in 2011, 

detects glucose in a linear range between 0.1-30 mM under physiological conditions (Tasca et 

al., 2011; Zafar et al., 2012; Felice et al., 2013; Ludwig et al, 2013) 

An example of the detection of electron acceptors is the CDH based biosensor for 

quinones. During detection of these potential electron mediators and their reduced 

counterparts, a higher potential must be applied. Also these biosensors are not as selective as 

the ones for carbohydrates (Ludwig et al., 2013)  

 
  

Table 1. CDH biosensors (adapted from Ludwig et al., 2013) 

Analyte  

 

Detection 

limit 

 

Mediator/ 

enhancer 

 

Electrode 

modification 

 

Electrode 

material 

CDH 

Cellobiose  0.5 μM No adsorption spectroscopic 

graphite 

MtCDH 

Lactose  1 μM No adsorption  spectroscopic 

graphite 

MtCDH 

Glucose  

 

0.01 mM No  cross-linked+ 

SWCNTs 

 

screen-

printed 

carbon 

electrode 

CtCDH 

Glucose  0.05 mM No cross-linked+ 

SWCNTs 

 

spectroscopic 

graphite 

CtCDH 

Hydroquinone  0.75 nM cellobiose adsorption spectroscopic 

graphite 

PcCDH 

Catechol  1 nM cellobiose adsorption spectroscopic 

graphite 

PcCDH 

 

2.3.3.2. Two phase reaction  

Another interesting possible application of CDH is in organic chemistry. Its ability to 

generate H2O2 in-situ can be used in various processes like cotton bleaching, in detergents or 
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in pulp and paper industry (Pricelius et al., 2009; Sygmund et al., 2013). As it has already 

been stated, the main drawback of CDH is its low affinity for oxygen as electron acceptor. 

Therefore a CDH variant with an increased affinity for oxygen has to be used for H2O2 

production. The proposed applications are eco-friendly comparing to the standard (chemical-

based) ones since there are no toxic by-products or excessive consumption of water and 

energy (Sygmund et al., 2013). Here we propose a new possible application of CDH based on 

in situ production of H2O2 . CDH is used together with enzyme, unspecific peroxygenase 

(UPO) in a cascade reaction.  This process is based on the fact that peroxidases in vivo depend 

on the activity of auxiliary enzymes which can provide hydrogen peroxide required for their 

activation (Martínez et al., 2014).  

Agrocybe aegerita unspecific peroxygenase belongs to a new type of peroxide-using, 

heme-thiolate enzymes that acts as a self-sufficient monooxygenases in the presence of 

enough hydrogen peroxide (Molina-Espeja et al., 2014). It catalyzes stereoselective benzylic 

hydroxylation of alkylbenzenes as well as C1-C2 epoxidation of styrene derivatives. For some 

benzylic hydroxylation products ((R)-1-phenylalkanols), enantiomeric excess is reported to be 

higher than 99%. Due to few reasons, among which its stability and efficiency, several 

publications point out that no other catalyst is as efficient as UPO in these reactions (Kluge et 

al., 2012), while others believe that the common problem of all heam peroxidases is the 

enzyme inactivation by excess peroxide and this should be specially considered (Hofrichter 

and Ullrich, 2013).  

 Optically pure -hydroxy alkylbenzenes and epoxides are widely used as building 

blocks in industry of fine chemicals, pharmaceuticals, antibiotics and odorous substances. 

Since classical chemical productions of these compounds are conducted in extreme and harsh 

reaction conditions, often economically and environmentally problematic, there are different 

efforts to avoid those kinds of disadvantages (Kluge et al., 2012). 
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3. MATERIALS AND METHODS 

3.1. MATERIALS AND METHODS FOR THE TRANSFORMATION 

PROCESS 

3.1.1. Strains 

The fungal strain Aspergillus niger D15#26 (pyrG-) had been used for the 

heterologous expression of the CtCDH and AoCDH III genes. pAN52.4 vector carrying the 

gene for the cellobiose dehydrogenase from Corynascus thermophilus C310Y and pan56.1 

with Aspergillus oryzae CDH III were produced in bacterial strain Escherichia coli NEB5α as 

well as the pAB4.1 plasmid with the pyrG gene from Aspergillus niger. 

3.1.2. Chemicals 

The list of chemicals used in the first part of this thesis is shown in Table 2. 

Table 2. List of chemicals  

Chemical Manufacturer 

Acetic acid Fluka, Switzerland 

Agar-Agar, Kolbe I Roth, Germany 

Ammonium sulfate Roth, Germany 

Ampicillin sodium salt Roth, Germany 

Aurin tricarboxylic acid ammonium salt, 

ATA 

Merck,  Germany 

Bradford reagent Sigma, USA 

Boric acid, ≥ 99% Sigma, USA 

Calcium chloride dihydrate Sigma, USA 

D(+)-cellobiose Fluka, Switzerland 

Citiric acid Sigma, USA 

Cobalt (II) chloride hexahydrate Sigma, USA 

Copper (II) sulphate  Sigma, USA 

Cytocrome c, from equine heart Sigma, USA 

Disodium hydrogen phosphate dihydrate Fluka, Switzerland 

Ethanol (96 %)  Sigma, USA 

EDTA Ethylenediaminetetraacetic acid 

disodium salt dihydrate 

Sigma, USA 

α-D(+)-Glucose monohydrate Roth, Germany 

Glycine Sigma, USA 

Iron (II) sulfate heptahydrate Sigma, USA 

D(+)-Lactose monohydrate Roth, Germany 

Magnesium sulfate heptahydrate Sigma, USA 

Manganese (II) chloride tetrahydrate Roth, Germany 

Polyethylene glycol 6'000 Fluka, Switzerland 
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3.1.3. Culture media 

LB (Luria-Bertani) Lysogeny broth with ampicilin 

The ingredients of 100 mL Luria-Bertani medium: 1 g NaCl, 1 g peptone from casein, 

0.5 g yeast extract and 100 mL of distilled water. Everything was mixed and autoclaved at 

121°C for 20 min. 100 μL of an ampicillin solution (100 mg mL-1) was added to the medium 

after the medium had been cooled down.  

Minimal medium plates 

In order to get 500 mL of the minimal medium agar we autoclaved (20 min/121°C) 

480 mL of distilled water with 8 g of agar. After that, the medium was placed in 60°C water 

bath for 10 minutes. Previously sterilized solutions, 10 mL of Asp A+N, 10 mL of 50% 

glucose, 1 mL of 1 M MgSO4 and 100 μL of trace elements solution were then added under 

sterile conditions.  

Minimal medium + sorbitol plates  

The composition of 500 mL minimal medium + sorbitol plates was the same as the 

one stated above, except before the sterilization, 200 mL of 3 M sorbitol had been added. 

Minimal medium for screening after transformation 

The composition of 1000 mL of the medium was as follows: 28.4 g Na2HPO4, 20 mL 

of Asp A-P, 2 mL of 1 M MgSO4 were added to 880 mL of distilled water. Before the 

sterilization (20 min/121°C), the pH had been adjusted to 5.5 with 1 M citric acid. After the 

Potassium chloride Fluka, Switzerland 

Potassium dihydrogen phosphate Roth, Germany 

Sodium chloride Roth, Germany 

Sodium hydroxide Fluka, Switzerland 

Sodium molbydate dihydrate Fluka, Switzerland 

Sodium nitrate Roth, Germany 

D-Sorbitol Sigma, USA 

Tween 20 Sigma, USA 

Zinc sulfate heptahydrate Sigma, USA 

Peptone from casein Fluka, Switzerland 

Yeast extract Fluka, Switzerland 

2-ethanesulfonic acid Sigma, USA 

2,6-dichloroindophenol Fluka, Switzerland 
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autoclaving, 100 mL of 50% glucose and 1 mL of the trace elements solution were added to 

the medium under sterile conditions. 

Complete medium plates  

For the volume of 500 mL we added 1 g of peptone from casein, 2.5 g of yeast extract 

and 8 g of agar to 480 mL of distilled water. The mixture was autoclaved for 20 min at 121 °C 

after which it was cooled down to 60 °C. Just before plates were poured, 10 mL of Asp A+ N, 

10 mL of 50% glucose, 1 mL of 1 M MgSO4 and 0.5 mL of the trace elements solution, had 

been added to the medium under sterile conditions. 

Complete medium (liquid) 

The composition of 500 mL complete medium was the same as the composition of 

complete medium plates. The only difference is that the liquid medium did not contain any 

agar. 

3.1.4. Buffers and solutions  

3.1.4.1. The composition of the solutions used for the transformation, screening and 

production 

AspA + N solution [50x] 

For 500 mL: 

NaNO3    148.8 g 

KCl    13.05 g 

KH2PO4    37.4 g 

Salts were dissolved in distilled water.  The pH value was adjusted to 5.5 with NaOH. 

The solution was autoclaved for 20 min at 121°C. 

AspA -P solution [50x] 

For 500 mL 

NaNO3    148.8 g 

KCl    13.05 g 
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Salts were dissolved in distilled water. The pH value was adjusted to 5.5 with NaOH. 

The solution was autoclaved for 20 min at 121°C. 

1 M CaCl2 

14.7 g CaCl2•2 H2O per 100 mL distilled water. 

The solution was autoclaved for 20 min at 121°C. 

CaCl2 1700 solution 

For 500 mL 

CaCl2•2 H2O   19.8 g  

NaCl    17.5 g  

The volume was filled up to 500 with distilled water. The solution was autoclaved for 

20 min at 121°C. 

1 M Citric acid 

96.05 g of citric acid per 500 mL distilled water.  

The solution was autoclaved for 20 min at 121°C. 

50% glucose solution 

50 g glucose per 100 mL distilled water. 

The solution was autoclaved for 30 min at 110°C. 

 1 M MgSO4 

24.6 g MgSO4•7H2O per 100 mL distilled water. 

The solution was autoclaved for 20 min at 121°C  

PEG 1700 

For the volume of 20 mL: 

PEG 6000   5 g 

1M CaCl2    1 mL 
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1M Tris, pH 7.5  200 μL 

The solution was sterilized by filtration through a sterile 0.2 m filter. 

3 M Sorbitol 

163.95 g of D-Sorbitol was gradually dissolved in 150 mL of distilled water, after 

which the volume was filled up with distilled water to 300 mL. The solution was autoclaved 

for 20 min at 121°C. 

STC 1700 solution 

For the volume of 500 mL: 

3M Sorbitol    200 mL 

1M Tris pH 7.5  5 mL 

CaCl2•2 H2O   3.7 g 

NaCl    1 g 

The volume was filled up to 500 mL with distilled water and autoclaved for 20 min at 

121°C. 

Trace elements solution 

ZnSO4•7 H2O   2.2 g 

H3BO3   1.1 g 

MnCl2•4 H2O   0.5 g 

FeSO4•7 H2O   0.5 g 

CoCl2•6 H2O   0.17 g 

CuSO4•5 H2O  0.16 g 

NaMoO4•2 H2O  0.15 g 

Na2EDTA   6.48 g 
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EDTA was dissolved before other salts had been added in 80 mL distilled water. The 

pH value was adjusted to 8.0 with KOH. The volume was filled up to total 100 mL with 

distilled water.  The solution was sterilized by filtration through a sterile 0.2 m filter. 

1 M Tris, pH 7.5 

To 60.6 g Tris 490 mL of distilled water was added. The pH value was adjusted to 7.5 

with HCl. The volume was filled up to 500 mL with distilled water and autoclaved for 20 min 

at 121°C. 

3.1.4.2. Buffers and solutions used during the purification 

 

Buffer A 

50 mM sodium acetate buffer pH 5.5 containing ammonium sulfate 

Acetic acid      4.29 mL 

Saturated ammonium sulfate solution  300 mL 

The acid was added to 375 mL deionized water, after ammonium sulfate solution was 

added to get 20 % saturated solution. The pH value was adjusted to 5.5 using 4M NaOH. The 

volume was filled up to 1500 mL with distilled water. 

Buffer B 

Acetic acid    4.29 mL 

The acid was added to 375 mL deionized water. The volume was filled up with 

distilled water to around 1400 mL. The pH value was adjusted to 5.5 using 4M NaOH. The 

final volume of solution was adjusted to 1500 mL with deionized water. 

0.5 M NaCl 

NaCl     43.83 g 

Salt was dissolved in distilled water; the final volume was 1.5 L.  
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3.1.4.3. Solutions used in activity assays and the characterization steps  

Bradford reagent 

10 mL of Bio-Rad protein assay dye reagent concentrate was diluted in 40 mL of high 

quality distilled water, after which it was filtered through a paper filter. 

Cytochrome c solution 

Considering our needs, we dissolved 3.1, 6.2 or 12.4 mg of cytochrome c in 0.25, 0.5 

or 1 mL of distilled water. The solution was stored at 4°C in the dark for three days. 

0.5 mM cellobiose solution 

Cellobiose    4.278 mg 

a) McIlvaine buffer pH 5.5 25 mL 

b) McIlvaine buffer pH 7.5 25 mL 

20 mM cellobiose solution 

Cellobiose    0.1712 g 

a) McIlvaine buffer pH 5.5 25 mL 

b) McIlvaine buffer pH 7.5 25 mL 

DCIP solution 

87.03 mg of 2,6-dichloroindiphenol (DCIP) was dissolved in 10 mL 96% ethanol by 

stirring (30 min, 50°C) in a volumetric flask. After complete dissolution, the final volume was 

adjusted to 100 mL with distilled water. The solution was kept in the dark at 4°C. 

300 mM lactose solution 

Lactose    10.81 g 

Distilled water   100 mL 

Lactose was dissolved at 50°C. The solution was stored for max 1 month at 4°C. 
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McIlvaine buffer  

A solution: Citric acid   19.21 g per 1L 

B solution: Na2HPO4   35.6 g per 1L 

In order to get 100 mL of the buffer with desired pH value, we added corresponding 

amount of the solution B as shown in Table 3 and filled up to the final volume with the buffer 

A. 

 

Table 3. Volume of the solution B to which corresponding amount of the solution A needs to 

be added to get a specific pH value 

pH .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 

2 - - - - - - 10.8 13.2 15.6 18.1 

3 20.6 22.6 24.7 26.6 28.5 30.3 32.2 33.9 35.5 37.1 

4 38.6 40.0 41.4 42.7 44.0 45.4 46.7 48.0 49.3 50.4 

5 51.5 52.6 53.6 54.7 55.8 56.9 58.0 59.2 60.5 61.8 

6 63.2 64.6 66.1 67.7 69.3 71.0 72.8 74.8 77.2 79.8 

7 82.4 85.6 85.6 88.8 90.7 92.1 93.6 94.6 95.7 - 
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3.1.5. Equipment 

Besides the laboratory dishes, the equipment described below was used: 

 Analytical balance (AW-4202, Sartorius group, Germany) 

 Autoclave (VarioClav Classic, Thermo Fisher Scientific, USA) 

 Centrifuge (Avanti J-26 XP, Beckman Coulter Inc., USA) 

 Centrifuge (Centrifuge 5810 R, Eppendorf, Germany) 

 Chromatography system (ÄKTA explorer 10, GE Healthcare Life Sciences, 

USA) 

 Digital dry bath (Accublock, Labnet International, USA) 

 Incubation shaker (Unitron, Infors HT, Schwitzerland) 

 Incubator (BE200 Bench top incubator, Memmert, Germany) 

 Laminar flow cabinet (Safe 2020, Thermo Fisher Scientific, USA) 

 Magnetic stirrer (RCT basic, IKA, Germany) 

 pH meter (744, Metrohm, Switzerland) 

 Spectrophotometer (DU 800, Beckman Coulter Inc., USA) 

 Table centrifuge (Centrifuge 5415 R, Eppendorf, Germany) 

 Table shaker (Titramax 100, Heidolph Instruments, Germany) 

 Technical balance (AW-224, Sartorious group, Germany) 

 Ultrasonic bath (Sonorex super, Bandelin, Germany) 

 UV/Vis spectrometer (Lambda 35, Perkin Elmer, USA) 

 Vortex (Vortex genie 2, Scientific Industries, USA) 

 Water bath (TW 12, Julabo, Germany) 
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3.2. METHODS: TRANSFORMATION PROCESS 

3.2.1. Cultivation of Escherichia coli NEB5α with pAN52.4-AoCDH III, pAN52.4-

CtCDH and pAB4.1 

Escherichia coli NEB5α with pan56.1-AoCDH III, Escherichia coli NEB5α with 

pan52.4-CtCDH and Escherichia coli pAB4.1 had previously been cultivated on lysogeny 

broth agar plates with ampicillin. Set of eprouvettes with 2 ml lysogeny broth + ampicilin was 

than inoculated with the pure culture of the strains described above and cultivated on a shaker 

at 140 rpm and 37°C for 12 h. 

After the cultivation in eprouvettes, 50 mL of the lysogeny broth with ampicillin was 

inoculated with the content from epprouvettes and cultivated in the same cultivation 

conditions as for the eprouvettes. 

3.2.2. Isolation of plasmids  

The isolation of the plasmids from NEB5α with pAN56.1-AoCDH III, pAB 4.1 and 

pAN52.4-CtCDH was carried out using plasmid isolation kit: QIAGEN Plasmid Plus Midi 

Kit (Appendix). Bacterial cells were harvested by centrifuging, after which they were 

resuspended in Buffer P1. Buffer P2 was added to the suspension and mixed gently. The 

mixture was left at room temperature, after which Buffer S3 was added. The mixture was then 

transferred to the QIAfilter Cartridge and incubated again at room temperature. Filtration of 

the cell lysate was carried out and Buffer BB was added. The mixture was transferred to a 

QIAGEN Plasmid Plus spin column on the QIAvac 24 Plus after which it was vacuum 

filtered. The DNA washing was carried out using Buffer ETR and Buffer PE. Vacuum 

filtration was then repeated. In order to eliminate residual buffer, the column was centrifuged. 

The QIAGEN Plasmid Plus spin column was transferred into a clean 1.5 mL tube. For the 

DNA elution 150 μL of Buffer EB was added to the spin column, the mixture was incubated 

at room temperature and then centrifuged. 

3.2.3. Cultivation of expression host, Aspergillus niger D15#26 (pyrG-)  

Aspergillus niger D15 spores from complete medium agar plates were collected with 

Tween 20 solution. Two 1 L Erlenmeyer flasks with 250 mL complete medium were 

inoculated with the spore solution to get the final concentration of 2*106 spores mL-1. The 

cultivation lasted for 12 h on a shaker at 150 rpm and 30°C. 
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3.2.4. Aspergillus niger transformation 

The process was carried out as protoplast-mediated transformation (Arentshorst et al., 

2012). Right before the transformation, the PEG solution was prepared and 300 mg of lyzing 

enzyme Caylase C4 was dissolved in 50 mL CaCl2 1700 buffer. Both solutions were then 

sterilized by filtration through a sterile filter.  

In order to get protoplasts, the Aspergillus niger mycelium, previously cultivated in complete 

medium flasks, was filtered through a sterile miracloth filter. It was then washed twice with 

about 100 mL of CaCl2 1700. The mycelium was weighed and 3 g of the wet mycelium was 

re-suspended in lyzing enzyme solution and left on shaker at 80 rpm and 30°C for 2 h. 

Since protoplasts are very fragile, they had been handled carefully. After 2 hours, protoplasts 

were filtered through the sterile miracloth into a 50 mL tube, diluted to ½ with cold STC 1700 

buffer and left on ice for 10 min. We centrifuged them at 2500 rpm for 15 min at 4°C and 

discarded the supernatant; afterward a 1 mm film was visible at the bottom. The film was re-

suspended in 25 mL of cold STC 1700 buffer and centrifuged at 3000 rpm for 10 min at 4°C. 

Two washes with STC 1700 buffer were made, after which protoplasts were re-suspended the 

in 1 mL STC 1700 buffer. 

The transformation was carried as follows: in a 50 mL tube, 1 µL of DNase inhibitor 

ATA, 2 µL of pAB4.1, 10 µL of desired gene solution and 150 μL of freshly prepared 

protoplasts were added. The content was gently mixed and left at room temperature for 30 

min. To avoid damaging protoplasts, six drops of the PEG solution were added on the wall of 

the tube, mixed and then 850 µL PEG was added. Since the PEG solution is toxic to 

protoplasts, incubation time with the stated solution was exactly 5 min. Afterwards, the 

mixture was diluted in 10 mL of STC 1700 and centrifuged at 3000 rpm for 10 min. The 

supernatant was drained whereas the residue was re-suspended in of STC 1700, generating the 

total volume of 500 µL. Minimal medium plates with sorbitol, previously warmed up at 30°C, 

were inoculated with the transformation mixture. Sealed plates with parafilm were left in the 

oven at 30°C, until growth was visible.  

3.2.5. Aspergillus niger CtCDH screening 

Few days after the transformation, before they sporulated, transformed single colonies 

had been transferred to small minimal medium plates without sorbitol. After plates were 

completely covered with the sporulating mycelium, normal minimal medium plates were 
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inoculated with the spore solution from those plates. With this subcultivation on normal plates 

we wanted to ensure enough spores for the liquid medium inoculation. 

The screening process is performed in order to see which transfomants will have the 

best expression of the desired enzyme. The screening was conducted in three 300 mL non-

baffled flasks. Spores from minimal medium plates were collected using a Tween 20 solution. 

Each flask with 100 mL of the minimal medium for screening was inoculated with the spore 

solution. The cultivation in screening medium lasted 10 days on a shaker with a shaking speed 

of 160 rpm and at 30°C. From the third day the pH value of the broth was adjusted to 5.5 with 

citric acid. From the sixth to the tenth day, samples were taken and tested for the DCIP 

activity. 

After the screening process, a sample was given for a sequence analysis in order to 

confirm that produced enzyme is CtCDH. For that purpose, an SDS-PAGE electrophoresis 

was run with the crude extract sample after which band was cutted and sent for the analysis 

(Appendix 1). 

3.2.6. Aspergillus niger CtCDH cultivation 

After the screening process, one, the most promising producer of CtCDH was chosen 

for a production. Five minimal medium agar plates were inoculated with the spore solution of 

this colony, collected before the screening. With this step we got enough inoculum for 

production which we used to inoculate fifteen non-baffled flasks with 300 mL of minimal 

medium for screening. The final concentration of spores in medium was 2*106 spores mL-1. 

The cultivation was carried out for 10 days on shakers at shaking speed of 160 rpm and at 

30°C. From the third day the pH value of the medium was set to 5.5 with 1 M citric acid.  

From the sixth to the tenth day, samples were taken and tested for DCIP activity.  

3.2.7. Enzyme purification 

The purification of the fermentation broth was carried using the ÄKTA explorer 10, in 

two step procedure: hydrophobic interaction chromatography and ion exchange 

chromatography. 

On the day when the activity reached its maximum, harvest was performed by 

filtration through a miracloth. Saturated ammonium sulfate solution was slowly added to the 

clarified broth to get a 20% saturated solution.  
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In the first step, solution was applied on a PHE Sepharose 6 fast flow column (70 mL 

resin and equipment are from GE Healthcare) equilibrated with 50 mM sodium acetate buffer 

pH 5.5 containing 20 % (saturation) ammonium sulfate. The elution of proteins was done 

within a linear gradient from 20 to 0% ammonium sulfate in 3 column volumes, and collected 

in 11 mL fractions. We pooled the active fractions after which we diafiltrated the solution 

using a hollow fiber cross-flow module (Microza UF module SLP-1053, 10 kDa cut-off, Pall 

Corporation).  

In the second step, the partially deionized enzyme solution (4 mS cm-1) was applied to 

a 20 mL Q15-Source column, previously equilibrated with 50 mM sodium acetate buffer. 

Proteins were eluted within a linear salt gradient from 0 to 0.5 M NaCl in 15 CV. The active 

fractions were concentrated and the buffer exchanged using a polysulfonate spin column. 

During the purification the activity was measured with the DCIP and the cytochrome c assays. 

 

3.2.8. Analytical methods 

3.2.8.1. Bradford protein assay 

This colorimetric assay is based on an absorbance maximum shift of an acidic solution 

of the Coomassie Brilliant Blue G-250 dye from 465 nm to 595 nm when it binds to proteins 

(Bradford, 1976). All measurements were performed with the Beckmann DU-800 

spectrophotometer. The measurement was performed in a way that to 15 μL of the protein 

sample 600 μL of the Bradford reagent was added. The mixture was left in the dark, at room 

temperature, for 12 min and then the absorbance of the samples was measured at 595 nm. The 

software calculates protein concentrations from previously prepared standard curve. 

3.2.8.2. Cellobiose dehydrogenase activity assay using DCIP 

This method is a standard method for CDH activity measurements in crude extracts or 

partially purified samples. In order to avoid substrate inhibition caused with its natural 

substrate cellulose, lactose or cellobiose is used instead. The activity is detected by the 

reduction of DCIP (the electron acceptor) which decolorizes the initially blue assay mixture 

(Bao et al., 1993, Baminger et al., 2001). All measurements were performed with the Lambda 

35 UV/Vis spectrometer and its accompanying software.  
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Pipetting protocol was as follows: 100 μL of the DCIP solution, 100 μL of the 

substrate solution (300mM lactose or cellobiose) and 780 μL of the buffer (McIlvaine 

pH=5.5). Cuvettes with mixtures were then temperated for minimum 20 min at 30°C in a 

water bath. The reaction began when 20 μL of the sample was added to the cuvette, which 

was already placed in the sample holder. The absorbance was recorded at 520 nm for 180 sec. 

The software calculates activity from the negative slope (decrease) of the absorption.  

3.2.8.3. Cellobiose dehydrogenase activity assay using cytochrome c 

This method is a reference method for CDH determination, but only in crude extracts 

or partially purified samples. Opposite to the DCIP method, only the activity of the 

holoenzyme CDH is determined. The substrates which oxidize in the reaction are lactose or 

cellobiose. The electron acceptor, cyt c is reduced during the reaction which causes the color 

change from orange to a more pinkish tone (Baminger et al., 2001). Measurements were 

performed with the same spectrophotometer as for the DCIP activity assay. 

The measurement was carried in a way that 20 μL of the cyt c solution, 100 μL of the 

substrate solution and 860 μL of the buffer (McIlvaine, pH= 7.5) were pipetted, respectively, 

in a cuvette. The mixture was incubated at 30°C in a water bath, minimum 20 min and then 

transferred to the sample holder. The reaction started when 20 μL of the sample was added to 

the solution. The absorbance was measured at 550 nm for 180 sec. The software calculates 

activity from the positive slope (increase) of the absorption.  

3.2.8.4. Kinetics constants assay 

In order to determine kinetic constants of CtCDH for cellobiose we measured CtCDH 

activity with different concentrations of cellobiose. Measurements were performed using 

both, the DCIP and the cyt c assays. For the DCIP activity we used McIlvaine buffer pH 5.5 

and for the cyt c assay McIlvaine buffer pH 7.5. Samples were prepared as stated in Table 4. 

for DCIP and in Table 5 for cyt c. 

Table 4. Sample preparation for the DCIP assay 

Cellobiose 

[µM] 
Substrate 

[µL] 

Stock 

solution 

[mM] 

DCIP 

[µL] 

Enzyme 

[µL] 

Buffer  

[µL] 

10 20 0.5 100 20 860 

25 50 0.5 100 20 830 

50 100 0.5 100 20 780 

100 200 0.5 100 20 680 
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200 400 0.5 100 20 480 

600 30 20 100 20 850 

2000 100 20 100 20 780 

5000 250 20 100 20 630 

10000 500 20 100 20 380 

 

Table 5. Sample preparation for the cyt c assay  

Cellobiose 

[µM] 
Substrate 

[µL] 

Stock 

solution 

[mM] 

Cyt c 

[µL] 

Enzyme 

[µL] 

Buffer  

[µL] 

5 10 0.5 100 20 950 

25 50 0.5 100 20 910 

50 100 0.5 100 20 860 

150 300 0.5 100 20 660 

250 500 0.5 100 20 460 

500 25 20 100 20 935 

800 40 20 100 20 920 

1200 60 20 100 20 900 

2500 125 20 100 20 835 

5000 250 20 100 20 710 

 

3.3. MATERIALS AND METHODS FOR TWO-PHASE BIOCONVERSION 

3.3.1. Enzymes 

Unspecific peroxygenase (UPO) from the edible mushroom Agrocybe aegerita was 

expressed in Pichia pastoris and purified previously. For this work different variants of 

enzyme cellobiose dehydrogenase (CDH) from Myriococcum thermophilum were used. The 

dehydrogenase domain of CDH was previously engineered to achieve higher oxygen affinity. 

Pichia pastoris was used as an expression host. N700S CDH variant has a single mutation at 

700th residue, where asparagine is substituted with serine. In CDH variant N748G asparagine 

at 748th residue is replaced with glutamine and in T750Q variant at 750th residue threonine is 

substituted with glutamine. CDH variants N748G/T750Q and N700S/N748G have mutations 

which are the combination of the mutations described above. CDH N700S/N748G/T750Q 

variant has three mutations, already stated and described above.  

 

3.3.2. Chemicals 

The list of chemicals used in the second part of this thesis is shown in Table 6. 
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Table 6. List of chemicals 

 

3.3.3. Composition of buffers and solutions  

McIlvaine buffer  

A solution: Citric acid      19.21 g per 1L 

B solution: Na2HPO4      35.6 g per 1L 

The buffer was prepared as previously described in 3.4.7 

100 mM Potassium phosphate buffer (KPP) pH 5.0  

Potassium dihydrogen phosphate     6.8045 g per 500 mL 

The salt was dissolved in 300 mL of distilled water, the pH value was adjusted to 5.0 with 

KOH, afterward the volume was filled up to 500 mL with distilled water. 

100 mM Potassium phosphate buffer (KPP) pH 7.0  

Potassium dihydrogen phosphate      6.8045 g per 500 mL 

Chemical Manufacturer 

ABTS, diammonium salt Amresco, USA 

Acetic acid Fluka, Switzerland 

Acetonitrile  Merck, USA 

Bradford reagent Sigma, USA 

D(+)-cellobiose Fluka, Switzerland 

Citric acid Sigma, USA 

Disodium hydrogen phosphate dihydrate Fluka, Switzerland 

Ethanol (96 %)  Sigma, USA 

Ethylbenzene Aldrich, USA 

Hydrogen peroxide 30% Fluka, Switzerland 

D(+) Lactose monohydrate Roth, Germany 

Methanol Roth, Germany 

Potassium dihydrogen phosphate Roth, Germany 

Potassium hydroxide Fluka,  Switzerland 

Sodium carbonate anhydrous Sigma, USA 

1-Phenylethanol Aldrich, USA 

2,6-dichloroindiphenol Fluka, Switzerland 
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The salt was dissolved in 300 mL of distilled water, pH was adjusted to 7.0 with KOH, 

afterward the volume was filled up to 500 mL with distilled water. 

200 mM sodium phosphate/citrate buffer pH 4.4 

For 200 mL: 

7.12 g of Na2HPO4x2H2O was dissolved in 150 mL of distilled water and then titrated with 10 

% citric acid to pH 4.4. The volume was filled up to 200 mL with distilled water. 

ABTS reagent 

10 mM     10.3 mg of ABTS was dissolved in 2 mL distilled water 

3 mM      3.09 mg of ABTS was dissolved in 2 mL distilled water 

The reagent was always freshly prepared. It is stable for 12 hours at 4 °C. 

Bradford reagent 

The reagent was prepared as previously described in 3.1.4.3. 

HRP reagent 

10 mg of horseradish peroxidase was dissolved in 1 mL distilled water which equals 2000 U 

mL-1. In order to get 1 U mL-1, the reagent was diluted 1:2000. 

Cytochrome c solution 

The preparation of the solution has already been described in 3.1.4.3. 

DCIP solution 

The solution was prepared as previously described in 3.1.4.3. 

Hydrogen peroxide solution 

According to our needs 30 % H2O2 solution was diluted 1:1000 or 1:10000. 

300 mM ethylbenzene solution 

Ethylbenzene      443.2 µL  

Methanol      14.44 mL 



 

32 

 

300 mM lactose solution 

The solution was prepared as it has already been described in 3.5. 

Cellobiose solution 

10 mM  Cellobiose     0.1712 g 

100 mM Cellobiose      1.712 g 

In order to get cellobiose solution with desired concentration we dissolved corresponding 

amount in McIlvaine buffer pH 7. The final volume was 50 mL. 

3.3.4. Equipment 

During this work, besides the laboratory dishes, the following equipment was used: 

 Analytical balance (AW-4202, Sartorius group, Germany) 

 Bioreactor (built-in-house) 

 Digital dry bath (Accublock, Labnet International, USA) 

 Flow console (Applikon, Holland) 

 Fiber-Optic Oxygen Microsensor (PreSens, Germany) 

 HPLC (Summit, Thermo Fisher Scientific, USA) 

o Reverse phase column (Discovery C18, Supelco, USA) 

o UV/Vis detector (Dionex Ultimate 3000, Thermo Fisher  

Scientific, USA) 

 Magnetic stirrer (RCT basic, IKA, Germany) 

 Oxygen meter (Microx TX3, PreSens, Germany) 

 pH meter (744, Metrohm, Switzerland) 

 pH meter (BioController, Applikon, Holland) 

 Pump (7549-20, Cole-Parmer, UK) 

 Spectrophotometer (DU 800, Beckman Coulter Inc., USA) 

 Table centrifuge (Centrifuge 5415 R, Eppendorf, Germany) 

 Thermo-shaker (, Eppendorf, Germany) 

 Technical balance (AW-224, Sartorious group, Germany) 

 Ultrasonic bath (Sonorex super, Bandelin, Germany) 

 UV/Vis spectrometer (Lambda 35, Perkin Elmer, USA) 

 Vortex (Vortex genie 2, Scientific Industries, USA) 
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 Water bath (TW 12, Julabo, Germany) 

 Water bath (F10, Julabo, Germany) 

3.4. METHODS - BIOCONVERSION PROCESS 

3.4.1. Analytical methods 

3.4.1.1. Bradford protein assay 

Measurements were performed as described in 3.2.8.1. 

3.4.1.2. H2O2 assay 

In order to monitor H2O2 concentrations generated during the reaction, we used a previously 

prepared calibration curve for hydrogen peroxide concentrations. For the calibration curve we 

prepared different concentrations of H2O2 as stated in Table 7. 

Table 7. Samples preparation for the standard curve  

H2O2 Stock solution 

1:1000 30 % H2O2  

KPP Buffer  

pH 7.0 

mM µL µL 

0.1 10 Filled up to 1 mL 

0.25 26 Filled up to 1 mL 

0.5 53 Filled up to 1 mL 

0.75 77 Filled up to 1 mL 

1 103 Filled up to 1 mL 

1.5 154 Filled up to 1 mL 

2 204 Filled up to 1 mL 

In a cuvette we placed 100 µL of ABTS reagent, 20 µL HRP reagent, 860 µL KPP buffer 

pH=5.5 and 20 µL of corresponding H2O2 dilution and then left the mixture at room 

temperature for twelve minutes. The absorbance of samples was measured at 420 nm with 

Beckmann DU-800 spectrophotometer after which the calibration curve was plotted. 
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3.4.1.3. Peroxidative and peroxygenase activity assay using ABTS-UPO activity 

This method is used for peroxygenase activity measurements in crude extracts or 

partially purified samples. During this oxygen dependent reaction ABTS is oxidized to the 

ABTS cation radical wherein colorless reaction mixture becomes green (Michal et al, 1983). 

All measurements were performed with the Lambda 35 UV/Vis spectrometer and its 

accompanying software.  

Pipetting protocol was as follows: 100 μL of the 3 M ABTS solution, 500 μL of the 

200 mM sodium phosphate/citrate buffer (pH=4.4), 10 µL of 200 mM H2O2 solution and 370 

µL of distilled water. Cuvettes with mixtures were then temperated for minimum 20 min at 

30°C in a water bath. The reaction began when 20 μL of the sample was added to the cuvette, 

which was already placed in the sample holder. The absorbance was recorded at 420 nm for 

180 sec. The activity was calculated automatically by the software. 

3.4.1.4. Cellobiose dehydrogenase activity assay using DCIP 

The method is already described in the section 3.2.8.2. 

3.4.1.5. Phenylethanol analysis 

Phenylethanol was analyzed using HPLC (Summit, Thermo Fisher Scientific, USA). All 

measurements were performed with the Supelco Discovery C18 reverse phase column in a 

combination with UV-Detector at 254 nm. Conditions were as follows: 20 % acetonitrile as 

mobile phase, flow rate 0.2 mL min-1, temperature 30 °C and injection volume 20 µL. 

y = 1,0973x - 0,0015
R² = 0,9965

0

0,5

1

1,5

2

2,5
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Figure 3. Calibration curve for hydrogen peroxide 
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Phenylethanol concentrations of 1 g L-1, 0.5 g L-1, 0,1 g L-1and 0.05 g L-1were used for the 

preparation of the calibration curve. All dilutions were prepared with mobile phase. 

3.4.1.6. Kinetic characterization of UPO 

In order to obtain more information about substrate inhibition of UPO we analyzed the 

specific activity of UPO at different hydrogen peroxide concentrations. Samples were 

prepared as stated in Table 8. 

Table 8. Preparation of samples for UPO's kinetics 

Final 

conc. 

H2O2 

Stock solution 

1:1000 30 % H2O2 

300 mM 

ethylbenzene 

in methanol 

1:200 

UPO 

KPP Buffer 

pH 7.0 

mM µL µL µL µL 

0.01 10.2 of 1:10000 30 % H2O2 100 20 Filled up to 1 mL 

0.05 51.05 of 1:10000 30 % 

H2O2 

100 20 Filled up to 1 mL 

0.10 10.2 of 1:1000 30 % H2O2 100 20 Filled up to 1 mL 

0.25 25.5 of 1:1000 30 % H2O2 100 20 Filled up to 1 mL 

0.50 51.05 of 1:1000 30 % H2O2 100 20 Filled up to 1 mL 

0.75 76.6 of 1:1000 30 % H2O2 100 20 Filled up to 1 mL 

1 102.1 of 1:1000 30 % H2O2 100 20 Filled up to 1 mL 

1.5 154.5 of 1:1000 30 % H2O2 100 20 Filled up to 1 mL 

2 204.2 of 1:1000 30 % H2O2 100 20 Filled up to 1 mL 

5 51.05 of 1:100 30 % H2O2 100 20 Filled up to 1 mL 

10 102.1 of 1:100 30 % H2O2 100 20 Filled up to 1 mL 

20 204.2 of 1:100 30 % H2O2 100 20 Filled up to 1 mL 

30 306.3 of 1:100 30 % H2O2 100 20 Filled up to 1 mL 

40 408.4 of 1:100 30 % H2O2 100 20 Filled up to 1 mL 

50 510.5 of 1:100 30 % H2O2 100 20 Filled up to 1 mL 

 

Each dilution was incubated exactly three minutes at 30 °C in a thermoshaker. In order to stop 

the reaction tubes were immediately transferred to 99 °C for 3 min or 100 µL of 4M acetic 

acid was added. Afterwards, the samples were centrifuged for 5 min at full speed. 

Phenylethanol concentrations were analyzed by HPLC as described above. 
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3.4.2. Characterization of CDH variants 

Specific activity of CDH variants described in 3.3.1.was measured with different 

oxygen concentrations. Measurements were carried out in a way that 10 mM cellobiose 

solution in two test tubes was bubbled with oxygen and nitrogen, respectively for twenty 

minutes. To obtain different oxygen concentrations, the solutions were mixed in different 

ratios. Measurements were performed with Fiber-Optic Oxygen Microsensor (Figure 4) in 

combination with the Microx TX3 device and the corresponding software. The obtained result 

was a linear decrease of the oxygen concentration. Specific activity was calculated from the 

slope and protein concentration. The results were processed in SigmaPlot. 

 

 

3.4.2.1. Determining of the reaction mechanism for CDH N700S/N748G variant 

To determine two substrate reaction mechanism, we kept the concentration of one substrate 

constant while we were measuring the activity of the variant at different concentrations of the 

other substrate. Measurements were performed with 0.5 mM, 1 mM and 3 mM cellobiose 

solutions as saturating substrate. Specific activity was determined with different O2 

concentrations. Analyses were performed as described above with exception of the cellobiose 

concentration. 

 

3.4.3. Two phase reaction 

Experimental setup is shown in Figure 5. 

Figure 4. Fiber-Optic Oxygen Microsensor 
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Figure 5. Reaction set-up 

A 500 mL bioreactor with magnetic propeller agitator was chosen for the reaction. 

Reaction was carried out in a reaction system consisting of 200 mL aqueous and 40 mL 

organic phase. The reactor was immersed in a 30°C water bath, heated with a thermoplate. 

The temperature was monitored with a feedback control Pt100 Thermometer. As a cooling 

system, we used a Liebig condenser and a water bath at -20°C (F10, Julabo, Germany). The 

pH value was measured and kept constant at 7.0 with a BioController pH meter and its 

corresponding control unit. Since we expected that the pH is decreasing during the reaction, 1 

M Na2CO3 was added automatically by the control unit into the system. Mixing was 

controlled with a magnetic stirrer (600 rpm) while we kept the oxygen concentration of 20 % 

constant with an Applikon flow console. 

The aqueous phase was 300 mM cellobiose and the organic phase was pure 

ethylbenzene. The reaction was tested for different UPO/CDH ratios, in terms of activity: 5:1, 

2:1, 1:1 respectively. The reaction began when 100 µL of UPO (104.2 U) and corresponding 

amount of CDH N700S/N748G variant were added to the reaction mixture (for 5:1 ratio we 

added 1.3 mL of the variant (16 U); for 2:1 we added 1.95 mL more and for 1:1 we added 3.3 

mL more). Every three hours new amount of CDH was added. During the reaction the 

following parameters were monitored: UPO and CDH activity and the concentration of H2O2. 

Samples were also taken for the analysis of the phenylethanol and cellobiose concentration. 
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3.4.4. Stability of UPO and CDH N700S/N748G variant in different reaction 

conditions  

Stability of enzymes was examined in different reaction conditions, as follows:  

 20 % oxygen, mixing speed 600 rpm 

 20 % oxygen, mixing speed 300 rpm 

 10 % oxygen, mixing speed 600 rpm 

The reaction setup was identical as previously described. Water was used instead of 

cellobiose. Measurements were performed for three hours. We used 100 L of UPO and 130 

L of CDH variant. Samples were analyzed for CDH and UPO activity. 
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 4. RESULTS AND DISCUSSION  

4.1. RESULTS AND DISCUSSION OF THE TRANSFORMATION PROCESS 

4.1.1. Aspergillus niger transformation 

Few days after the transformation was carried out, 16 transformed single colonies 

were subcultivated on new minimal medium plates. Out of 16 transformants found, twelve of 

them were likely to contain AoCDH and the rest CtCDH gene. Only one CtCDH transformant 

continued to grow in the second generation (Figure 6.) The reason for such low efficiency 

could be that the desired gene was not integrated in the genome. 

 

Figure 6. A. niger CtCDH transformant 

 

4.1.2. Aspergillus niger CtCDH screening 

CtCDH transformed colony, for which we have assumed to have desired gene 

integrated in the genome, was subjected to screening. The screening was conducted as already 

described. The pH values can be seen in Appendix 2. 

The crude extract samples from the 6th day were submitted to the DCIP activity 

assay and at the 11th day activity had reached its maximum (Table 9). Also for the samples 

from the last day of screening, the cyt c activity was measured. The results of these assays are 
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expressed as average values ± standard deviation and can be seen below (Table 9). The 

sequence analysis of the crude extract sample confirmed that produced enzyme was CtCDH. 

 

Due to high DCIP and cytochrome c activity of the crude extracts we decided to 

continue with the production. The crude extract from the last day was also subjected to the 

Bradford protein concentration assay. 

Table 9. Activity of CtCDH during the screening 

Activity 

assay 

Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 

DCIP  

[U mL-1] 

0.16 ± 0.06 

 

0.23 ± 0.07 

 

0.37 ± 0.07 0.50 ± 0.08 

 

0.59 ± 0.13 

 

0.62 ± 0.06 

Cytochrome 

c [U mL-1] 

n.a. n.a. n.a. n.a. n.a. 0.17 ± 0.01 

 

4.1.3. Aspergillus niger CtCDH cultivation 

For the production of CtCDH we inoculated 15 non-baffled flask containing 250 mL 

of the same media used for the screening.  The appearance of the flasks on the inoculation day 

can be seen on Figure 7. Figure 8 shows the appearance of flasks on the 9th day. The pH 

values, which had been monitored during the cultivation, can be found in Appendix 3. 
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Figure 7. Flask appearance on the inoculation day. 

 

Figure 8. Appearance of flasks on the 9th day. 

After 10 days, cells were harvested by filtration and discarded, whereas filtrates of the 

flasks were collected to give 2.4 L of the liquid crude extract. The crude extract was then 

purified as previously described. After each purification step, the samples were analyzed for 

the DCIP and the cyt c activity and the protein concentration was determined. In Table 10, the 

results of the analyses, as well as the calculated total protein mass and the specific activity, 

can be found. 
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Table 10. Results of the Bradford, the DCIP assay, the cytochrome c assay, the calculated total protein mass and the specific activity (results are 

shown as average value ± STD)  

  

Sample  Volume 

[mL] 

Protein 

concentration 

[mg mL-1] 

Total 

protein 

[mg] 

DCIP activity, 

pH=5.5 

[U mL-1] 

DCIP Specific 

activity  

pH=5.5 

[U mg-1] 

Cyt c activity, 

pH=7.0 

[U mL-1] 

Cyt c Specific 

activity  

pH=7.0 

[U mg-1] 

Crude 

extract  

2400 0.14 ± 0.01 331 ± 34 0.36 ± 0.02 2.58 ± 0.14  0.09 ± 0.01  

 

 0.64 ± 0.34 

After 

HIC & 

vivaflow 

40 0.15 ± 0.01 6.04 ± 0.29 1.44 ± 0.05  9.51 ± 0.30  0.33 ± 0.01  2.17 ± 0.02 

After IEX: 2 fractions: 

a) 16 

b) 20 

2 fractions: 

a) 2.83 ± 0.13 

b) 0.82 ± 0.01   

 2 fractions  

 a) 45.3 ± 2.10 

 b) 16.4 ± 0.21 

 2 fractions: 

a) 50.2 ± 3.78 

b) 12.1 ±0.19  

2 fractions 

a) 17.7 ±1.33 

b) 14.8 ± 0.23 

 2 fractions  

 a) 14.9 ± 0.19 

 b) 2.07 ± 0.25 

 2 fractions 

 a) 5.29 ± 0.07 

 b) 2.54 ± 0.31 

Pure 

CDH  

2 fraction 

a) 1.4 

b) 1.0 

2 fractions: 

a) 24.1 ± 0.36 

b) 11.8 ± 0.46 

2 fractions: 

a) 33.7 ± 0.49 

b) 11.8 ± 0.46 

2 fractions: 

a) 416 ± 3.51 

b) 149 ± 5.25 

2 fractions: 

a) 17.3 ± 0.15 

b) 12.7 ± 0.44 

 2 fractions  

 a) 99.6 ± 0.39 

 b) 38.8 ± 0.10 

 2 fractions: 

 a) 4.13 ± 0.02   

 b) 3.27 ± 0.01 
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4.1.4. CDH characterization 

Kinetics determination 

To determine kinetic constants of CtCDH in a reaction with cellobiose we measured 

the activity with different cellobiose concentrations. All samples and dilutions were prepared 

using the McIlvaine buffer. Dilutions of CtCDH were 100 times for the DCIP assay and 700 

times for the cyt c assay. 

Although it has been reported that the enzyme follows the ping-pong reaction 

mechanism, the Michaelis-Menten model sufficiently well describes CDH's reaction kinetics 

and it is widely used in the literature for the calculation of kinetic parameters (Schultz, 2015) 

(Figures 9 and 10). 
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Figure 9. Activity of CtCDH in the presence of different cellobiose concentrations measured 

with the DCIP assay at pH 5.5. 
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Figure 10. Activity of CtCDH in the presence of different cellobiose concentrations measured 

with the cytochrome c assay at pH 7.5. 

The Vmax value determined with the DCIP assay is 356 U mL-1, which corresponds to 14.8 U 

mg-1 whereas the KM value is 320 M. The measurements with the cyt c assay resulted in a 

Vmax of 108 U mL-1 (13.3 U mg-1) and a KM of 37 M. 
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4.2. RESULTS OF THE BIOCONVERSION PROCESS 

4.2.1. Kinetic characterization of UPO 

The activity of UPO in the presence of the different H2O2 concentrations can be seen 

below (Figures 11 and 12). The kinetic constant for inhibition couldn't be calculated from the 

obtained results. In this case, we can talk about the inactivation rather than the inhibition, but 

this is yet to be confirmed. 

 

Figure 11. Activity of UPO in the presence of different H2O2 concentrations (termal denaturation 

of UPO). 

 

Figure 12.  Activity of UPO in the presence of different H2O2 concentrations (acid denaturation 

of UPO). 
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Kinetics constants are calculated for the area with no inhibition. Vmax and KM values 

obtained from the thermal denaturation measurement are 252 U mg-1 and 2.15 mM, respectively.  

The acid denaturation measurement resulted with Vmax 160 U mg-1 and KM 2.82 mM. 

4.2.2. Characterization of different CDH variants 

In order to compare the oxygen activity of different CDH variants with activity of wild 

type DH and wild type CDH, we also analyzed wild type DH and wild type CDH. Since the 

electron transfer between the two CDH domains is strongly pH dependent, the measurements 

were also performed at pH 5.5. It is important to state that both of the reactions were very slow 

and results are just for comparison purposes. The molecular mass was calculated by EXPASy 

online tool for DHCDH from position 208N on. The signal peptide was determined by SignalP4.1 

and was removed before the calculation of the molecular mass for the whole CDH. 

Table 11. Specific activity of flavocytoprotein CDH and dehydrogenase domain of CDH at 

100% oxygen concentration and 10 mM cellobiose. 

CDH type Specific activity pH=5.5 
[kUmol-1] 

Specific activity pH=7 
[kU mol-1] 

wild-type DHCDH 

MW = 66689.45 g mol-1 
4688 4508 

wild-type CDH 

ME = 86623.31 g mol-1 
5475 3231 

The specific activity at pH 7.0, depending of different oxygen concentrations as also as 

belonging KM and Vmax values, can be seen in the following figures. 

 c (oxygen) [µmol/L] 

0 200 400 600 800 1000 1200

sp
ec

ifi
c 

ac
tiv

ity
 

[U
/m

g]

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

   Vmax = 0.2991 U mg-1 
   KM = 2211.3078 µM 

Figure 13. Wild-type DH 
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 4.2.3. The two substrate reaction mechanism for CDH N700S/N748G variant 

The results (Figure 20) showed that the reaction follows, so called, PING-PONG mechanism. 

Vmax = 6.6980 U mg-1 
KM = 144.5524 µM 

Figure 18. N748G/T750Q 

Figure 19. N700S/N748G 
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4.2.4. Specific activity of CDH N700S/N748G variant depending on different 

concentrations of cellobiose 

The results obtained from the reaction mechanism analyses are used for determining 

the kinetic constants for cellobiose in presence of different oxygen concentrations. The 

specific activity depending of different cellobiose concentrations as also as the belonging KM 

and Vmax values, can be seen in the following figures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21. Specific activity depending on different concentrations of cellobiose with 5% 

oxygen. 
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Figure 20. Two substrate reaction mechanism for CDH N700S/N748G variant 
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Figure 22. Specific activity depending on different concentrations of cellobiose with 20 % 

oxygen 

 

 

Figure 23. Specific activity depending on different concentrations of cellobiose with 50% 

oxygen. 
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Figure 24. Specific activity depending on different concentrations of cellobiose with 100% 

oxygen. 

 

4.2.5. Two-phase reaction 

CDH or the DH domain of CDH can take part in two-phase bioconversion of 

ethylbenzene to phenylethanol together with enzyme unspecific peroxygenase (UPO). For this 

specific reaction it is important to use a CDH variant or, better its DH domain, with higher 

oxygen affinity, since as already stated, the reaction of wild type CDH with oxygen is very 

low. Bioconversion is conducted in two separated reactions which take place in aqueous 

phase while one substrate is in organic phase. In the first reaction cellobiose is oxidized to 

cellobionic acid wherein the FAD of DH is then reduced to FADH2. In order to be reoxidized, 

FADH2 donates two electrons to oxygen, which is than reduced to H2O2. H2O2 is then reduced 

by UPO in a reaction where ethylbenzene diffuse from organic to aqueous phase and gets 

oxidized to phenyethanol which diffuses back to the organic phase.   
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During the reaction we noticed very fast inactivation of UPO. To determine which factors are 

crucial for enzyme stability, we tested the enzyme activity in different reaction conditions, as 

it can be seen in the next section. 

 

  

Figure 25.  Activity of UPO and CDH, concentrations of H2O2 during the reaction. 
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4.2.6. Stability of UPO and CDH N700S/N748G variant in different reaction conditions.  

Figure 26. Stability of UPO at 20% O2, 600 rpm.                               Figure 27. Stability of CDH N700S/N748G at 20% O2, 600. 
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Figure 28. Stability of UPO at 20% O2, 300 rpm.  Figure 29.  Stability of CDH N700S/N748G at 20% O2, 300 rpm. 
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Figure 31. Stability of CDH N700S/N748G at 10% O2 and 300 rpm. 
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Figure 30. Stability of UPO at 10% O2 and 300 rpm.  
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4.3. DISCUSSION: TRANSFORMATION PROCESS 

As the most abundant raw material on the Earth, lignocellulosic biomass has great 

potential as the main material in numerous bioprocesses (Nigam and Pandey, 2009; 

Philippoussis, 2009), but it is important to find the most efficient way to break down that kind 

of material to a less complexed structure. Lignocellulose-degrading enzymes, among which 

CDH, play a great role in that process. To avoid complexed and time consuming cultivation of 

the natural CDH producers, cdh genes are cloned in different, well-known expression hosts 

which enable fast, reliable and efficient enzyme production (Ludwig et al., 2013). 

Due to genetic and evolutionary resemblance it can be speculated if and which fungal 

expression system is the best for the heterologous expression of CDH genes from white and 

brown rot, phytopathogenic and composting fungi. As expected, the recombinant production 

of holoenzyme in a bacterial expression system was reported as inefficient due its inability to 

perform posttranslational modifications (Harreither et al., 2012), while several attempts to 

express CDH in a yeast expression system were successful (Harreither et al., 2012; Ludwig et 

al., 2013). To examine the efficiency of another fungal expression system, the heterologous 

expression of the cdh gene from Corynascus thermophilus in Aspergillus niger was studied as 

well as the heterologous expression of the cdh class III gene from Aspergillus oryzae. 

The project was carried out as, so called, cotransformation, where we had produced 

and isolated the selection marker and the desired gene separately in corresponding 

Escherichia coli strains. Few days after the transformation was carried out, 16 transformants 

were obtained. Out of 16 transformants found, twelve of them were likely to contain AoCDH 

and the rest CtCDH gene. Since only one CtCDH transformant continued to grow in the 

second generation, that colony was chosen for the screening process. The reason for such low 

efficiency could be that the desired gene was not integrated in the genome. During the 

screening, high CDH activity was detected, in an average of 620 U L-1 (Table 9).  

A picture of the SDS-PAGE gel with the crude extract sample after the screening can 

be found in Appendix 1. The band between 75 and 100 kDa is visible which corresponds to 

values reported in the literature (Ludwig et al., 2013). Furthermore, the band is not smeared 

indicating that the produced CDH is very pure. 

Since the screening showed very good activity, we continued with the production in 

the same cultivation conditions to avoid consumption of nutrients for the growth instead of 

the enzyme production. Aspergillus grew in form of pellets. In every flask there were 
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approximately same-size pellets as every flask was cultivated with the same concentration of 

spore solution (Figures 7 and 8). 

Interestingly, during the production process, enzyme activity measured by the DCIP-

assay was half as high as during the screening (Appendix 4). The volumetric activity during 

the production was similar to the reported value (376 U L-1) for recombinant production of 

CtCDH in Pichia pastoris (Harreither et al., 2012; Ludwig et al., 2013), while it had been 

doubled during the screening process (Table 9). Reasons are left for speculation, since both, 

the screening and the production were carried out in the same conditions.  

During the cultivation we noticed daily increase of the pH value resulting with the maximum 

value of 6.5 (Appendix 3). This was expected since it corresponds to the described natural 

conditions with pH values increasing from pH 5.0 to 7.5, as for example, in soil or compost 

(Harreither et al., 2011).  This also suggests a more extended pH working range of the 

produced enzyme (Harreither et al., 2011).  

The purification yields are moderate because only the purest fractions were pooled, 

which due to different color, were collected in two separated fractions (Table 10). We 

assumed that the one with darker color could contain the holoenzyme and the lighter one is 

probably an isolated domain. This can be proved with SDS electrophoresis, but unfortunately, 

due to lack of time, it has not been checked.  As it can be seen in Table 10, the results 

obtained with the DCIP and the cyt c assays are different, in fact, the results of the DCIP 

activity assay are much higher (3-5 times) than those for cyt c. As already described, the 

difference between these two acceptors is that DCIP is reduced by dehydrogenase domain of 

CDH, while cyt c interacts only with the cytochrome domain of CDH. Interestingly, the 

calculated specific activity of the purified CDH at pH 5.5 for DCIP (Table 10) was similar to 

the one reported for the wild type CtCDH obtained in a cellulose containing medium (17.8 U 

mg-1 ) (Harreither et al, 2011). The specific activity for cyt c at pH 7.0 was as expected, 4 

times lower. The obtained results are higher from those reported for CtCDH expressed in 

Pichia pastoris (Harreither et al., 2012), for DCIP 4.2 times higher and for cyt c 1.45 times 

higher. 

To determine kinetic constants of CtCDH in a reaction with cellobiose we measured 

the activity with different cellobiose concentrations (Figure 9 and 10). The KM value 

determined with the DCIP assay was approximately twice of value reported for wild type 

CtCDH as well as the maximum specific activity (Harreither et al., 2012). In 2012, Harreither 
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et al. also reported the KM values with cyt c as electron acceptor which were, comparing the 

reported values here, 4.6 times lower for both wild type CtCDH and recombinant CtCDH 

produced in Pichia pastoris. Furthermore, the obtained Vmax (U mg-1) values are similar for 

both assays. 

 

4.4. DISCUSSION: BIOCONVERSION PROCESS 

Regarding the kinetic characterization of UPO, we can speculate about the inactivation 

rather than the inhibition, but this is yet to be confirmed. The maximum velocity for the acid 

denaturation method is 1.57 fold lower than for the thermal inactivation. This is most 

probably due to the immediate stop of the reaction with acid compared to the slow thermal 

inactivation. The KM value is not as affected as the Vmax since there is no such big difference 

between the values for the described ways of inactivation (Figures 11 and 12). 

The reactions of cellobiose oxidation in presence of 100 % oxygen catalyzed 

separately with the flavocytoprotein CDH and the dehydrogenase domain of CDH were very 

slow, so the obtained results are just for comparison purposes (Table 11). The isolated 

dehydrogenase domain shows the same activity at both its pH optimum 7 and pH 5.5. For the 

wild type CDH there is a difference, at pH 7 the activity is almost half of the activity at 5.5, 

which confirms that electron transfer between two CDH domains is strongly pH dependent 

and it has a maximum at 5.5 (Harreither et al.2011). Further measurements are needed to 

confirm the data.  

Different publications have reported CDH's low tendency for oxygen reduction 

(Kracher et al., 2016), so the final outcome of the introduced mutations described in material 

and methods was a higher oxygen affinity. The influence of different mutations of CDH 

variants is noticeable if we compare kinetic data for each mutation (Figures 13-19). If we 

compare Vmax and KM values of the wild type isolated domain with values obtained from the 

single variant N700S, we can see that there is not significant improvement in oxygen affinity 

since there is no considerable difference between KM values. Also the Vmax value of the 

variant is slightly higher than wild type DH. Opposite to the previous single mutant, the 

mutation in the variant N748G resulted in higher O2 affinity since the KM value of this variant 

is almost 6 times lower compared to value of the wild type isolated domain. The Vmax value is 

10 times higher than the wild type DH. The third single variant T750Q also shows 

improvement of kinetic data compared to the wild type DH, but not as good as variant 
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N748G. The double mutations in variant N700S/N748G resulted in similar kinetic data for 

single variant N748G indicating that replacing asparagine with serine at 700 th residue 

(N700S), does not have significant effect on oxygen affinity. The mutations in variant 

N748G/ T750Q were the most efficient, since the KM value was around 15 times lower than 

the KM for the wild type DH. The investigation of this variant also resulted in the highest Vmax 

value. The obtained kinetic data from reactions with the triple variant were in between the 

results from the double variants. From this we can assume that the N700S variant does not 

have a positive impact on the oxygen affinity, whether alone or combined with other 

mutation.  

Although the variant N700S/N748G is not the variant with the highest oxygen affinity, 

it was chosen for two substrate reaction mechanism determinations, because of available 

quantities. The results showed that this specific reaction, with cellobiose and oxygen as 

substrates follows the, so called, PING-PONG reaction mechanism (Figure 20). This 

corresponds to literature since this reaction mechanism was reported for all oxidoreductases 

(Schulz, 2015). Cellobiose binds first and is oxidized to cellobiono-1.5-lactone while FAD is 

reduced to FADH2 . The product is then released and undergoes spontaneous hydrolysis to 

cellobionic acid. The second substrate, (oxygen) is then bound, after which FAD is reoxidized 

by oxygen. Oxygen is reduced to hydrogen peroxide and released from the enzyme. Although 

we can confirm that the reaction mechanism does not follow the Michaelis-Menten model, 

nevertheless we used it for calculation of kinetic parameters as it is done in most publications 

(Schulz, 2015) (Figures 13-24). 

The kinetic constants of the variant N700S/N748G for cellobiose are obtained by 

combining the results from the reaction mechanism analyses (Figures 21-24). With increasing 

oxygen concentration changes in KM and Vmax values are visible. There is a trend, up to 50 % 

of oxygen concentration, the KM value increase as well as the Vmax. This can be explained by 

the following: the increment of the KM does not mean lower cellobiose affinity, but with 

higher oxygen concentration the cofactor is faster reoxidized. This means with faster 

reoxidation of cofactor, that CDH has "less time" to bind cellulose and that is reflected in a 

higher KM value. Vmax is higher with higher oxygen concentrations, as expected. KM and Vmax 

values with 100 % oxygen do not fit in described "half reaction theory". Reason could be 

connected to inhibition of reaction in presence of oxygen concentration higher than 80 % 

(Figure 19).  
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The same variant was used in an enzyme cascade reaction within a two phase reaction 

setup (Figure 25). The reaction conducted in this way was designed to be more environmental 

friendly since it can be conducted under mild reaction conditions. Moreover, if air is used 

instead of the pure oxygen, the process also can be cost friendly. During the reaction we have 

already noticed significant inactivation of UPO in first three hours. CDH kept its activity as 

new quantities were added every three hours, but it is hard to say what percentage of CDH 

added at the beginning saved its stability and activity. Stated can be consequence of 

combination of a few factors such as presence of organic phase and mixing rate, oxygen 

concentration and temperature. Conducting the reaction in different reaction conditions should 

have resulted in an answer to the question which factors are crucial for enzyme stability. Both 

CDH and UPO showed no good stability in given conditions (Figures 26-31). Apparently, the 

oxygen concentration has a bigger effect on CDH stability than the mixing rate, since there is 

high loss of activity in first half an hour with higher examined oxygen concentration while 

with lower concentration activity of CDH kept constant. In contrast to that, UPO has 

significant loss of activity with lower oxygen concentrations, although in general we can say 

that in given conditions UPO is not stable. Further measurements need to be done since these 

changes in the reaction-setup did not improve the stability of UPO. 

In 2010 Ludwig et al. reported several cases in which the stability of CDH was a 

problem. Among these are: denaturation by gas/liquid interference in air-mixed bioreactors 

and systems with higher concentration of hydrogen peroxide. The loss of activity was also 

reported as result of the adsorption of CDH to natural and artificial polymers, such as 

cellulosic and glass surfaces. Ultimately, further improvement must be achieved regarding 

enzyme stability, for example, with genetic manipulations or better reaction design.
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5. CONCLUSIONS  

Based on the obtained results in this thesis, the following can be concluded: 
 

1. The heterologous expression of cellobiose dehydrogenase from Corynascus 

thermophilus can be successfully done in Aspergillus niger as expression host, while 

for recombinant expression of class III cellobiose dehydrogenase from Aspergillus 

oryzae further studies must be done 

2. During the production, CtCDH produced in Aspergillus niger showed similar 

characteristics to wild-type CtCDH. It also had higher specific activity comparing to 

CtCDH produced in Pichia pastoris. Produced enzyme showed higher KM value for 

cellobiose comparing to both, wild type CtCDH and CtCDH produced in Pichia 

pastoris. 

3. Higher oxygen affinity of the dehydrogenase domain of CDH can be successfully 

obtained with genetic engineering; mutations in variant N748G/ T750Q seem to be the 

most efficient. 

4. CDH catalyzes two-substrate reaction that follows a ping-pong reaction mechanism. 

5. CDH variants (produced by recombination) can be applied in organic chemistry. The 

limiting factor in the two-phase bioconversion process seems to be the enzyme's 

stability on which further research must focus.
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7. APPENDICES 

 

 

Appendix 1. SDS-PAGE showing the molecular mass standard (lane 2) and CtCDH 

(lane 1). 

 

Mini-PROTEAN TGX Precast Gels (Bio-Rad, USA), Mini PROTEAN Tetra Cell 

(Bio-Rad, USA), and the PowerPac HC (Bio-Rad, USA) power supply were used for the 

electrophoresis. All procedures were done according to the manufacturer’s (Bio-Rad 

Laboratories) recommendations.  

In the first well 15 μL of the denatured sample was loaded while in the second one 15 

μL of the unstained Precision Plus Protein Standard (Bio-Rad, USA) was loaded. The 
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electrophoresis was run at 120 V for about an hour. Protein bands were visualized by staining 

with QC Colloidal Coomassie (Bio-Rad, USA) and washed using distilled water.  
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Appendix 2. The change of the pH value during the screening. 

  

  Day3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 

Flask Starting 

pH value 

Before  After  Before  After  Before  After  Before  After  Before  After  Before  After  Before  After  Before  After  

I 5.5 5.9 5.0 5.0 5.0 5.3 5.3 6.2 5.3 5.9 5.3 6.3 5.3 6.5 5.6 6.5 5.6 

II 5.5 5.9 5.0 5.3 5.3 5.9 5.3 6.2 5.3 5.9 5.3 5.9 5.3 6.8 5.6 6.8 5.6 

III 5.5 5.9 5.0 5.3 5.3 6.2 5.3 5.3 5.3 5.9 6.2 6.5 5.3 6.5 5.6 6.5 5.6 

 

 

Appendix 3. The change of the pH value during the cultivation. 

 

  Day3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 

Flask Starting 

pH 

value 

Before  After  Before  After  Before  After  Before  After  Before  After  Before  After  Before  After  Before  After  

I 5.5 6.2 5.3 5.6 5.6 5.9 5.6 5.6 5.6 5.9 5.3 5.9 5.3 5.9 5.3 5.9 5.3 

II 5.5 6.2 5.3 5.6 5.6 5.9 5.6 5.6 5.6 5.6 5.3 5.9 5.3 6.2 5.6 6.2 5.6 

III 5.5 6.2 5.3 5.6 5.6 5.9 5.6 5.6 5.6 5.9 5.3 5.9 5.3 6.2 5.6 6.5 5.6 
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IV 5.5 6.5 5.6 5.9 5.6 5.9 5.6 5.6 5.6 5.9 5.3 5.9 5.3 6.2 5.6 6.5 5.6 

V 5.5 6.2 5.3 5.9 5.6 5.9 5.6 5.6 5.6 5.9 5.3 5.9 5.3 6.2 5.6 6.5 5.6 

VI 5.5 6.2 5.3 5.9 5.6 5.9 5.6 5.6 5.6 5.6 5.3 5.6 5.3 6.2 5.6 6.5 5.6 

VII 5.5 6.2 5.3 5.9 5.6 5.9 5.6 5.6 5.6 5.9 5.3 5.9 5.3 6.2 5.6 6.5 5.6 

VIII 5.5 5.9 5.3 5.9 5.6 5.9 5.6 5.6 5.6 5.9 5.3 5.9 5.3 5.9 5.3 6.5 5.6 

IX 5.5 6.2 5.3 5.9 5.6 5.9 5.6 5.6 5.6 5.9 5.3 5.9 5.3 6.2 5.6 6.5 5.6 

X 5.5 5.9 5.3 5.9 5.6 5.9 5.6 5.6 5.6 5.9 5.3 5.9 5.3 6.2 5.6 6.5 5.6 

XI 5.5 6.2 5.3 5.9 5.6 5.9 5.6 5.6 5.6 5.9 5.3 5.9 5.3 5.9 5.3 6.8 5.6 

XII 5.5 6.2 5.3 5.9 5.6 5.9 5.6 5.6 5.6 5.9 5.3 5.9 5.3 6.2 5.6 6.5 5.6 

XIII 5.5 6.2 5.3 5.9 5.6 5.9 5.6 5.6 5.6 5.9 5.3 5.9 5.3 6.2 5.9 6.5 5.6 

XIV 5.5 6.2 5.3 5.9 5.6 5.9 5.6 5.6 5.6 5.6 5.3 5.9 5.3 6.2 5.6 6.5 5.6 

XV 5.5 6.2 5.3 5.9 5.6 5.9 5.6 5.6 5.6 5.9 5.3 5.9 5.3 6.2 5.6 6.5 5.6 
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Appendix 4. The change of the activity during the cultivation (average value  STD). 

 Day 7 Day 8 Day 9 Day 10 

Flask Activity 

[U mL-1] 
Activity 

[U mL-1] 
Activity 

[U mL-1] 
Activity 

[U mL-1] 

I 0.19   0.006 0.15  0.022 

 

0.17  0.001 

 

 

0.22  0.014 

II 0.24  0.020 0.31  0.019 0.31  0.020 

 

0.33   0.008 

III 0.29  0.006 0.31  0.030 

 

0.33  0.020 

 

0.38  0.013 

 

IV 0.31  0.038 0.32  0.002 

 

0.33  0.002 

 

0.36  0.007 

V 0.29  0,011 0.34  0.062 0.33  0.009 0.48  0.001 

VI 0.16  0.007 0.19  0.021 

 

0.18  0.037 

 

0.35  0.002 

VII 0.23  0.001 0.27  0.060 

 

0.31  0.012 

 

0.29  0.030 

VIII 0.23  0.035 0.26  0.001 

 

0.25  0.003 

 

0.28  0.007 

IX 0.13  0.004 

 

0.14  0.020 

 

0.20  0.057 

 

0.21  0.017 

X 0.27  0.010 0.35  0.080 

 

0.45  0.039 

 

0.45  0.044 

XI 0.15  0.006 0.17  0.020 

 

0.21  0.072 0.26  0.056 
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XII 0.28  0.004 0.35  0.002 

 

0.37  0.037 

 

0.43  0.016 

XIII 0.22  0.004 0.28  0.015 

 

0.39  0.065 

 

0.30  0.005 

XIV 0.24  0.004 0.28  0.030 

 

0.31  0.065 

 

0.31  0.055 

XV 0.35  0.008 0.38  0.060 0.43  0.015 0.42  0.062 

 


