Sveučilište u Zagrebu Prehrambeno-biotehnološki fakultet Prediplomski studij Biotehnologija

Marija Tomić
7197/BT

UZGOJ PLIJESNI Mortierella isabellina NA HIDROLIZATU KUKURUZNOG OKLASKA

ZAVRŠNI RAD

Znanstveno-istraživački rad: Održiva proizvodnja bioetanola i biokemikalija iz otpadnih poljoprivrednih lignoceluloznih sirovina (HRZZ, 9158)

Mentor: izv. prof. dr. sc. Mirela Ivančić Šantek

Zagreb, 2018.
Zahvaljujem se svojoj mentorici izv. prof. dr. sc. Mireli Ivančić Šantek na strpljenju i uloženom trudu pri izradi završnog rada. Također, zahvaljujem se Marini Grubišić, mag. ing. i tehničarima Laboratorija za biokemijsko inženjerstvo, industrijsku mikrobiologiju i tehnologiju piva i slada Marini Vnuče, Ljiljani Blažević i Igoru Livadi na stručnoj pomoći.
Uzgoj plijesni Mortierella isabellina na hidrolizatu kukuruznog oklaska

Marija Tomić, 7197

Sažetak: Oleaginozni mikroorganizmi poput plijesni Mortierella isabellina nakupljaju lipide u uvjetima limitacije rasta izvorom dušika u prisutnosti suviška izvora ugljika. Mikrobni lipidi su alternativna sirovina za proizvodnju biodizela druge generacije. Lignocelulozna biomasa je nusproizvod poljoprivredne i drvne industrije i može se koristiti kao jeftin izvor ugljika za rast mikroorganizama. Iako jeftina, lignocelulozna biomasa ima vrlo složen sastav zbog čega se podvrgava različitim postupcima predobrade koji povećavaju cijenu biogoriva. U ovom istraživanju Mortierella isabellina je uzgojena na hidrolizatu alkalno predobrađenih kukuruznih oklasaka uz limitaciju rasta izvorom dušika. Tijekom rasta dva najzastupljenija šećera u lignoceluloznom hidrolizatu, glukoza i ksilozna, su se trošila redoslijедno. Najveće vrijednosti koncentracije lipida od 10,614 gL⁻¹ i produktivnosti sinteze lipida od 0,87115 gL⁻¹dan⁻¹ postignute su jedanaesti dan uzgoja.

Ključne riječi: biodizel, lignocelulozne sirovine, mikrobni lipidi, Mortierella isabellina
Rad sadrži: 34 stranice, 11 slika, 6 tablica, 59 literaturnih navoda
Jezik izvornika: hrvatski
Rad je u tiskanom i elektroničkom obliku pohranjen u knjižnici
Prehrambeno-biotehnološkog fakulteta Sveučilišta u Zagrebu, Kačićeva 23, 10 000 Zagreb
Mentor: izv. prof. dr. sc. Mirela Ivančić Šantek
Cultivation of fungus *Mortierella isabellina* on corn cob hydrolysate

Marija Tomić, 7197

Abstract: Oleaginous microorganisms such as fungus *Mortierella isabellina* accumulate lipids under nitrogen limited conditions in presence of a excess carbon source. The microbial lipids are alternative feedstock for the production of second generation biodiesel. Lignocellulose biomass is a by-product obtained from the agricultural and wood industry and can be used as a cheap carbon source for growth of microorganisms. Although inexpensive, lignocellulose biomass has a very complex composition due to which it has to be subjected to different pretreatment procedures that increase the price of biofuel. In this study, *Mortierella isabellina* was cultivated on the enzymatic hydrolysate of alkali-prepared corn cobs under nitrogen limited conditions. During the growth two main sugars in lignocellulosic hydrolysate, xylose and glucose, were consumed sequentially. The highest lipid productivity and lipid concentration of 0.87115 gL\(^{-1}\)day\(^{-1}\) and 10.614 gL\(^{-1}\), respectively, was obtained at the eleventh day of cultivation.

Keywords: biodiesel, lignocellulose biomass, microbial lipids, *Mortierella isabellina*

Thesis contains: 34 pages, 11 pictures, 6 tables, 59 references

Original in: croatian

Thesis is in printed and electronic form deposited in the library of the Faculty of Food Technology and Biotechnology, University of Zagreb, Kačićeva 23, 10 000 Zagreb

Mentor: PhD Mirela Ivančić Šantek, Associate professor

Technical support and assistance: Marina Grubišić, mag.ing.

Defence date: June 18\(^{th}\) 2018
SADRŽAJ

1. UVOD ... 1

2. TEORIJSKI DIO.. 2

 2.1. LIGNOCELULOZNE SIROVINE .. 2
 2.1.1. CELULOZA ... 2
 2.1.2. HEMICELULOZA .. 3
 2.1.3. LIGNIN .. 3

 2.2. PREDOBRAĐA I HIDROLIZA LIGNOCELULOZNIH SIROVINA 4
 2.2.1. FIZIČKA PREDOBRAĐA .. 4
 2.2.2. FIZIKALNO-KEMIJSKA PREDOBRAĐA .. 5
 2.3.3. KEMIJSKA PREDOBRAĐA .. 6
 2.2.4. BIOLOŠKA PREDOBRAĐA .. 6
 2.2.5. ENZIMSKA HIDROLIZA PREDOBRAĐENE SIROVINE 6

 2.3. INHIBITORI I NUSPROIZVODI .. 7
 2.3.1. INHIBITORI ... 7
 2.3.2. NUSPROIZVODI U PROIZVODNJI BIODIZELA IZ LIGNOCELULOZNIH SIROVINA .. 8

 2.4. OLEAGINOZNI MIKROORGANIZMI I BIOSINTEZA LIPIDA 8
 2.4.1. MORTIERELLA ISABELLINA .. 9
 2.4.2. BIOSINTEZA LIPIDA ... 11

3. EKSPERIMENTALNI DIO .. 13

 3.1. MATERIJALI .. 13
 3.1.1. RADNI MIKROORGANIZAM ... 13
 3.1.2. SIROVINE I KEMIKALIJE KORIJENIH U PRIPREMI HRANJIVE PODLOGE 13
 3.1.3. OSTALE KEMIKALIJE KORIJENIH U ISTRAŽIVANJU 14
 3.1.4. HRANJIVA PODLOGA ... 14
 3.1.5. UREDAJI I OPREMA .. 15
 3.1.5.1. UREDAJI ZA VISOKO DJELOTVORNU TEKUČINSKU KROMATOGRAFIJU (HPLC) ... 15
 3.1.5.2. OSTALA OPREMA I UREDAJI ... 16

 3.2. METODE .. 16
 3.2.1. UZGOJ ČISTE KULTURE PLIJESNI ... 16
 3.2.2. UZGOJ PLIJESNI U TIKVICAMA .. 16
 3.2.3. PRIPREMA HIDROLIZATA KUKURUZNIH OKLASAKA ZA UZGOJ PLIJESNI ... 17
 3.2.4. UZGOJ PLIJESNI U TIKVICAMA NA LIGNOCELULOZNOG HIDROLIZATU 17
 3.2.5. ANALIZA UZORAKA ... 18
 3.2.5.1. ODREĐIVANJE UDJELOA LIPIDA ... 18
 3.2.5.2. ODREĐIVANJE KONCENTRACIJE FERMENTABILNIH ŠEĆERA PO NOĆU TEKUČINSKIE KROMATOGRAFIJE VISOKO UČINKOVITOSTI (HPLC) ... 19
 3.2.5.3. BOJANJE LIPIDA U UZORCIMA .. 20
 3.2.5.4. PRORAČUN PARAMETARA USPJEŠNOSTI BIOPROCESA 21

4. REZULTATI I RASPRAVA .. 22

5. ZAKLJUČAK .. 27

6. LITERATURA ... 28
1. UVOD

Cilj ovog rada je provođenje šaržnog uzgoja plijesni Mortierella isabellina na hidrolizatu kukuruznih oklasaka i sinteza lipida koji bi poslužili kao sirovina za proizvodnju biodizela. Svakodnevna analiza sastava biomase i prevrele hranjive podloge provedena je s ciljem optimizacije bioprocesa sinteze lipida i povećanja učinkovitosti.
2. TEORIJSKI DIO

2.1. LIGNOCELULOZNE SIROVINE

Problem korištenja prehrambenih materijala kao sirovina za proizvodnju biogoriva u biorafinerijama prve generacije potaknuo je razvoj biorafinerija druge generacije, koje kao sirovinu koriste lignoceluloznu biomasu (Sims i sur., 2010). Velika količina neželjenog lignoceluloznog otpada koja nastaje u šumarstvu, poljoprivredi i prehrambenoj industriji koristi se kao vrijedan izvor sirovina umjesto biljaka uljarica (Sun i Cheng, 2002). Lignocelulozna sirovina je zbog svog složenog sastava teško razgrađiva (Jin i sur., 2015), a polisaharidi staničnih stijenki mogu se koristiti kao sirovina za proizvodnju biogoriva tek nakon hidrolize na jednostavne šećere (saharifikacija). Stanične stijenke viših biljaka su fleksibilne, ali složene strukture sastavljene od prirodnih polimeri celuloze, hemiceluloze i lignina koji održavaju strukturni integritet biljnih stanica (Ragauskas i sur., 2006, Solomon i sur., 2007). Celuloza i hemiceluloza su polisaharidi građeni od različitih monosaharida, dok je lignin aromatski heteropolimer sintetiziran iz fenilpropanoidnih prekursora. Sastav i postotak ovih polimeri razlikuje se ovisno o vrsti biljke, a zanimljivo je da se njihov sastav mijenja s dobij, fazom rasta i okolišnim uvjetima (Jeffries, 1994).

Udio celuloze u kukuruznim oklascima iznosi 45%, hemiceluloze 35%, a lignina 15% (Howard i sur., 2003).

2.1.1. CELULOZA

Celuloza je linearni homopolimer sastavljen od molekula monosaharida D-glukoze povezanih β-1,4 glikozidnim vezama koje tvore dugačke lanci (fibrile). Lanci celuloze sadrže brojne hidroksilne skupine koje tvore vodikove veze unutar istog lanca, ali i između paralelno poredanih lanaca. Tako međusobno povezani lanci tvore osnovnu celuloznu vlaknu. Osnovna vlakna zajedno tvore mikrovlakna (mikrofibrile), a njihov se položaj i duljina razlikuje u različitim dijelovima stanične stijenke, odnosno cijele biljke. Celuloza je unutar biljaka pojavljuje se u kristaličnom i amorfnom obliku. Za razliku od prevladavajućeg kristaličnog oblika, amorfn oblik celuloze podložniji je enzimskoj i kiselinjoj razgradnji. U lignoceluloznoj biomasi celuloza je povezana s hemicelulozom i ligninom što značajno utječe na uspješnost njene hidrolize.
2.1.2. HEMICELULOZA

Hemiceluloza je složeni ugljikohidratni polimer i čini 25-30% ukupne suhe tvari biljke. To je polisaharid s manjom molekularnom masom od celuloze, a građen je od D-ksiloze, D-manoze, D-galaktoze, D-glukoze, L-arabinoze, 4-O-metilglukurona te D-galakturonske i D-glukuronske kiseline. Šećeri su međusobno povezani s β-1,4 te u manjoj mjeri s β-1,3-glikozidnim vezama (Perez i sur., 2002). Kao i celuloza, u prirodi se pojavljuje povezan s drugim biljnim polimerima koji utječu na njezinu dostupnost.

2.1.3. LIGNIN

enzimsku hidrolizu celuloze sprječavajući fizički kontakt enzima celulaza i celuloznih vlakana što dovodi do smanjenog prinosa fermentabilnih šećera (glukoze i ksiloloze). Zbog navedenih razloga predstavlja jedan od glavnih problema u proizvodnji biogoriva iz lignoceluloznih sirovina (Weng i sur., 2008).

\[\text{Slika 2. Struktura lignina (preuzeto iz Bajpaj, 2016)}\]

2.2. PREDOBRADE I HIDROLIZA LIGNOCELULOZNIH SIROVINA

Biosinteza mikrobnih lipida iz lignoceluloznih materijala sastoji se od tri osnovna koraka: predobrade sirovine, enzimske hidrolize lignocelulozne sirovine do fermentabilnih šećera i proizvodnje lipida (Ruan i sur., 2015).

2.2.1. FIZIČKA PREDOBRADE

2.2.2. FIZIKALNO-KEMIJSKA PREDOBRAĐA

Tip predobrade koji uključuje kemijske i fizikalne metode naziva se fizikalno-kemijska predobrada. Najčešće korištene metode su: eksplozija parom, eksplozija vlakana amonijakom (AFEX) i predobrada toplom vodom (Brodeur i sur., 2011, Mosier i sur., 2005).

1. Eksplozija parom

Kod ove metode lignocelulozna biomasa se tretira visokim tlakom zasićene vodene pare, a zatim se naglo smanjuje tlak uslijed čega dolazi do dekompresije sustava. Postupak se vodi pri temperaturi 160-260 °C uz odgovarajući nadtlak (0,69-4,83 MPa) kroz kratko vrijeme, a zatim se tlak naglo spušta na atmosferski. Biomasu je potrebno držati na povišenom tlaku radi hidrolize hemiceluloze, dok visoke temperature uzrokuju slabljenje strukture lignina. Ova metoda predobrade pokazala se učinkovitom za predobradu različitih vrsta lignoceluloznih sirovina (Kurabi i sur., 2005, Ruiz i sur., 2006, Varga i sur., 2004).

2. Eksplozija vlakana amonijakom (eng. Ammonium fiber explosion, AFEX)

3. Predobrada toplom vodom

Tokom ove predobrade lignocelulozna biomasa se kuha u vodi uz visoke temperature i tlak. Ovim načinom predobrade povećava se dostupnosti celuloznih vlakana te samim time povećava prinos fermentabilnih šećera (heksoza i pentoza) enzimskom hidrolizom predobrađene sirovine. Prednost ovog postupka je niska, odnosno zanemariva koncentracija inhibitora (Kim i sur., 2009).
2.3.3. KEMIJSKA PREDOBRADA

1. Kiselinjska predobrada

Tretman sirovine kiselinom uključuje upotrebu koncentriranih kiselina za razgradnju kristalične celuloze i razrjeđenih kiselina za hidrolizu amorfne celuloze. Najčešće korištena kiselina je sumporna kiselina (72% H₂SO₄), koja se koristi za različite vrste biomase (Digman i sur., 2010, Li i sur., 2010). Također se koriste druge kiseline, kao što su klorovodična kiselina (HCl), fosforna kiselina (H₃PO₄) i dušična kiselina (HNO₃). Prednost postupka je uspješna hidroliza hemiceluloze (Zhang i sur., 2007). Ovisno o uvjetima provođenja (temperatura, tlak) i sastavu sirovine, predobrada može potrajati nekoliko minuta do nekoliko sati (Saha i sur., 2005).

2. Alkalna predobrada

Alkalna predobrada uključuje korištenje kemikalija kao što su natrijev lužina (NaOH), kalcijeva lužina (Ca(OH)₂), amonijeva lužina (NH₄OH)₂). Lužine uzkuju razgradnju glikozidnih lanaca i estera što posljedično uzrokuje strukturne promjene lignina, djelomičnu dekristalizaciju celuloze i hidrolizu hemiceluloze (Cheng i sur., 2010, Ibrahim i sur., 2011, McIntosh i sur., 2010). Tijekom alkalne predobrade biomasa se namače u alkanoj otopini uz miješanje kod određene temperature kroz određeni vremenski period. Vrlo je učestala kombinacija kiselinjske i alkalne predobrade radi uspješnije hidrolize lignina i hemiceluloze, a prije samog koraka enzimskih hidrolize potrebno je isprati zaostale kiseline i lužine te ukloniti nastale inhibitore (Manon i Rao, 2012).

2.2.4. BIOLOŠKA PREDOBRADA

U biološkoj predobradi koriste se razni mikroorganizmi (bakterije i gljive) koji razgrađuju lignoceluloznu sirovinu i čine ju prikladnijom za naknadnu razgradnju enzimima (Sun i sur., 2008). Često se koriste gljive bijelog truljenja kao Phanerochaete chrysosporium, Daedalea flavida i Phlebia fascicularia (Howard i sur., 2003, Arora i sur., 2002). Biološka predobrada vrlo je obećavajuća tehnika s nizom prednosti kao što su nizak utrošak energije i kemikalija te ekološki prihvatljiv način rada. Međutim, osnovni nedostaci su spora mikrobiološka razgradnja biomase, pažljiva kontrola uvjeta uzgoja i potreban veliki prostor za provedbu predobrade. Osim toga većina gljiva uz lignin razgrađuje celulozu i hemicelulozu, smanjujući time njihov udio u biomasi (Eggeman i sur., 2005).

2.2.5. ENZIMSKA HIDROLIZA PREDOBRAĐENE SIROVINE

S ciljem hidrolize strukturnih ugljikohidrata do fermentabilnih šećera najčešće se koriste celulolitički enzimi. Uz celulolitičke enzime, pomoću kojih iz celuloze dobivamo željenu glukozu,

2.3. INHIBITORI I NUSPROIZVODI

2.3.1. INHIBITORI

Neželjena niska produktivnost procesa, odnosno slab prinos lipida najčešće je posljedica inhibicije celulolitičkih i hemicelulolitičkih enzima te mikroorganizma producenta inhibitorima prisutnim u lignoceluloznim hidrolizatima.

Tijekom predobrade sirovine nastaju mnogi inhibitori različitog kemijskog sastava koji uključuju slabe kiseline (octena kiselina, mravlja kiselina i levulinska kiselina), derivate furana (furfural i hidroksimetilfurfural (HMF)) i fenolne spojeve (vanilin i siringaldehid). Nastali inhibitori inhibiraju celulaze i hemicelulaze te ometaju rast stanica radnog mikroorganizma i posljedično smanjuju nakupljanje lipida.

Oleaginozna plijesna *Mortierella isabellina* pokazala se vrlo otpornom na inhibitore lignoceluloznih hidrolizata kao što su furfural, HMF i fenolni spojevi. Utjecaj inhibitora na rast i potrošnju supstrata vidljiv je na početku uzgoja, ali nakon brze prilagodbe mikroorganizma na inhibitore u podlozi rast stanica i akumulacija lipida značajno su se poboljšali. *Mortierella isabellina* može rasti u prisutnosti furfurala (~ 1 gL\(^{-1}\)), hidroksimetilfurfurala (~ 2,5 gL\(^{-1}\)), ferulinske (~ 0,5 gL\(^{-1}\)) i kumarne kiseline (~ 0,5 gL\(^{-1}\)) bez značajnije promjene brzine rasta. U koncentracijama većima od toleriranih inhibitori počinju utjecati na mikrobi metabolizam, pri čemu dolazi do smanjenja ili potpunog zaustavljanja rasta biomase i sinteze lipida (Ruan i sur., 2015).
2.3.2. NUSPROIZVODI U PROIZVODNJI BIODIZELA IZ LIGNOCELULOZNIH SIROVINA

Isplativost procesa proizvodnje biodizela iz lignoceluloznih sirovina može se povećati prodajom nastalih nusproizvoda biorafinerije. Lignin se može koristiti za proizvodnju toplinske ili električne energije te za proizvodnju kemikalija i goriva. U slučaju uzgoja oleaginoznih organizama, nakon ekstrakcije lipida, kolač nepatogene biomase može se prodati kao hrana za životinje ili kao sirovina u proizvodnji biopolimera (Jin i sur., 2015, Zakzeski i sur., 2010). Višestruko nezasićene masne kiseline mogu se koristiti kao dodatak hrani i u proizvodnji nutraceutika.

2.4. OLEAGINOZNI MIKROORGANIZMI I BIOSINTEZA LIPIDA

Mikroorganizmi koji imaju sposobnost nakupljanja značajnih količina lipida u obliku neutralnih triacilglicerola nazivaju se oleaginozni mikroorganizmi (Koutinas i sur., 2011), a obuhvaćaju različite vrste kvasaca, algi, plijesni i bakterija. Za razliku od neoleaginoznih organizama, koji sintetiziraju značajno manje količine lipida prvenstveno potrebne za sintezu membrana u stanici, oleaginozni mikroorganizmi veći dio lipida pohranjuju kao rezervni materijal stanice (Ratledge, 2004). Lipidi čine više od 20 % suhe tvari biomase oleaginoznih mikroorganizama (Xu i sur., 2013), a najzastupljenije masne kiseline u lipidima su: miristinska
(C14:0), palmitinska (C16:0), stearinska (C18:0), oleinska (C18:1), linoleinska (C18:2) i linolenska (C18:3) (Ruan i sur., 2012). Udio pojedinih masnih kiselina razlikuje se ovisno o mikroorganizmu producentu i izvoru ugljika za rast (Xu i sur., 2013).

Sastav masnih kiselina u lipidima mikrobnog podrijetla sličan je repičinom ulju koje se koristi kao najčešća sirovina za proizvodnju biodizela prve generacije. Upravo zbog toga su mikrobni lipidi alternativna sirovina za proizvodnju biodizela (Ruan i sur., 2012).

2.4.1. MORTIERELLA ISABELLINA

Rod Mortierella su plijesni tla koje pripadaju redu Mortierellales unutar pododjeljka Mucoromycotina, a odjeljka Zygomycota (Hibbett i sur., 2007). Saprofitni su organizmi koji se mogu pronaći u tlu, na trulom lišću i drugim organskim materijalima (Webster i Weber, 2007). Filamentozna gljiva Mortierella isabellina uspješno se uzgaja na kemijskim definiranim podlogama, ali i na hidrolizatima raznih lignoceluloznih sirovina kao što su primjerice kukuruzni oklasci. Prilikom uzgoja uz limitaciju rasta izvorom dušika plijesan Mortierella isabellina učinkovito previre fermentabilne šećere, odnosno izvor ugljika, uz nakupljanje značajnih količina staničnih lipida čiji udio može iznositi do 80%. Najpogodniji izvor ugljika za uzgoj plijesni Mortierella isabellina je glukoza, zatim ksilosa, fruktoza i alkohol glicerol, dok se slabiji rast i sinteza lipida postiže na saharizi (Chatzifragkou i sur., 2010, Ruan i sur., 2012, Xu i sur., 2013). Također, neizostavan sastojak podloge je dušik, a kao najpogodniji izvor dušika prilikom uzgoja ove plijesni pokazao se kvaščev ekstrakt i diamonijev sulfat u omjeru 1:1 (Gao i sur., 2013). Zadovoljavajuća temperatura za uzgoj plijesni Mortierella isabellina kreće se od 25 °C do 30 °C, a optimalna pH vrijednost podloge je u rasponu 4,5-6,0 (Ruan i sur., 2012).
Slika 4. Rast plijesni Mortierella isabellina na čvrstoj PDA podlozi (A, B, C) i mikroskopski preparati (D, E, F, G) (vlastita fotografija)
2.4.2. BIOSINTEZA LIPIDA

Za unapređenje procesa proizvodnje, tj. nakupljanja lipida potrebno je objasniti biokemijski put sinteze samih lipida u oleaginoznim organizmima. Kao što je već prije spomenuto dobiveni lipidi su u obliku triacilglicerola (esteri alkohola glicerola i masnih kiselina). Akumulaciji lipida unutar stanice prethodi smanjenje brzine rasta uslijed limitacije jednom od komponenti podloge (najčešće limitacija dušikom) u prisutnosti izvora ugljika. U takvim uvjetima izvor ugljika se koristi za sintezu rezervnih polisaharida. Kada je koncentracija preostalog dušik u podlozi vrlo niska, aktivira se enzim AMP deaminaza i razgrađuje AMP (adenozin monofosfat) uz nastajanje amonijaka (NH_3), odnosno potrebnog dušika. Aktivnost ovog enzima u uvjetima limitacije dušikom povećava se i do pet puta.

\[
\text{AMP} \rightarrow \text{inozine 5'–monofosfat} + \text{NH}_3
\]

Kao rezultat smanjenja koncentracije AMP-a ciklus limunske kiseline se usporava i dolazi do nakupljanja izocitrata zbog smanjene aktivnosti izocitrat dehidrogenaze, čija je aktivnost regulirana koncentracijom AMP-a. Posljedično dolazi do nakupljanja citrata u mitohondriju stanice. Važno je napomenuti da su oleaginozni mikroorganizmi većinom eukarioti i imaju mitohondrij u kojem se odvija ciklus limunske kiseline. Akumulirani citrat se zatim iz mitohondrija prenosi u citosol stanice pomoću citrat-malat translokaze, gdje se pomoću citrat liaze i utroška jedne molekule ATP-a (adenozin trifosfat) cijepa u acetil-CoA (acetil koenzim A) i oksaloacetat.

\[
\text{Citrat} + \text{CoA} + \text{ATP} \rightarrow \text{acetil-CoA} + \text{oksaloacetat} + \text{ADP} + \text{Pi}
\]

Oksaloacetat se prevodi malat dehidrogenazom u malat koji se može transportirati u mitohondrij citrat-malat translokazom ili se prevodi u piruvat uz sintezu NADPH (nikotinamid adenin dinukleotid fosfat) i CO_2 pomoću malatnog enzima.

\[
\text{Malat} + \text{NADP}^+ \rightarrow \text{piruvat} + \text{CO}_2 + \text{NADPH}
\]

11
Nastali acetil-CoA i NADPH proizvedeni kao posljedica limitacije dušikom koriste se u sintezi masnih kiselina, odnosno triacilglicerola. Udio pojedinih masnih kiselina ovisi o vrsti oleaginoznog mikroorganizma, a kod kvasaca i plijesni većina nastalih masnih kiselina ima šesnaest ili osamnaest ugljikovih atoma (C16, C18), a najmanje zastupljena masna kiselina je linolenska (C18:3) koje ima manje od 20% (Ratledge, 2004).

Slika 5. Metabolički put biosinteze lipida (preuzeto iz Jin i sur., 2015.)
3. EKSPERIMENTALNI DIO

3.1. MATERIJALI

3.1.1. RADNI MIKROORGANIZAM

Korišteni radni mikroorganizam je plijesan Mortierella isabellina, soj DSM 1414, iz zbirke organizama Deutche Sammlung von Mikroorganismen und Zellkulturen (DSMZ; Braunschweig, Njemačka).

3.1.2. SIROVINE I KEMIKALIJE KORIŠTENE U PRIPREMI HRANJIVE PODLOGE

Komponente za pripremu hranjive podloge navedene su u Tablici 1.

Tablica 1. Komponente hranjive podloge korištene za šaržni uzgoj plijesni Mortierella isabellina

<table>
<thead>
<tr>
<th>KOMPONENTA HRANJIVE PODLOGE</th>
<th>PROIZVOĐAČ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidrolizat kukuruznog oklaska</td>
<td>Hrvatsko Zagorje, Hrvatska</td>
</tr>
<tr>
<td>Kvaščev ekstrakt</td>
<td>Roth, Austrija</td>
</tr>
<tr>
<td>Diamonijev sulfat</td>
<td>Kemika, Hrvatska</td>
</tr>
<tr>
<td>Kalijev dihidrogenfosfat</td>
<td>Kemika, Hrvatska</td>
</tr>
<tr>
<td>Natrijev dihidrogenfosfat</td>
<td>Kemika, Hrvatska</td>
</tr>
<tr>
<td>Natrijev hidrogenfosfat</td>
<td>Kemika, Hrvatska</td>
</tr>
<tr>
<td>Magnezijev sulfat heptahidrat</td>
<td>Kemika, Hrvatska</td>
</tr>
<tr>
<td>Kalcijev klorid dihidrat</td>
<td>Kemika, Hrvatska</td>
</tr>
<tr>
<td>Željezov (III) klorid sektahidrat</td>
<td>Kemika, Hrvatska</td>
</tr>
<tr>
<td>Cinkov sulfat heptahidrat</td>
<td>Merck, SAD</td>
</tr>
<tr>
<td>Bakrov sulfat pentahidrat</td>
<td>Kemika, Hrvatska</td>
</tr>
<tr>
<td>Kobaltov nitrat monohidrat</td>
<td>Kemika, Hrvatska</td>
</tr>
<tr>
<td>Manganov sulfat pentahidrat</td>
<td>Sigma, SAD</td>
</tr>
<tr>
<td>PDA agar</td>
<td>Difco, USA</td>
</tr>
</tbody>
</table>
3.1.3. OSTALE KEMIKALIJE KORIŠTENE U ISTRAŽIVANJU

Osim navedenih komponenti podloge, ostale kemikalije korištene tokom istraživanja navedene su u Tablici 2.

Tablica 2. Kemikalije korištene u istraživanju

<table>
<thead>
<tr>
<th>KEMIKALIJA</th>
<th>PROIZVOĐAČ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citratni pufer</td>
<td>Kemika, Hrvatska</td>
</tr>
<tr>
<td>Enzimski pripravak (Cellic CTec2)</td>
<td>Sigma Aldrich, SAD</td>
</tr>
<tr>
<td>Ampicilin</td>
<td>Carl Roth, Austrija</td>
</tr>
<tr>
<td>Kloroform</td>
<td>Macron Fine Chemicals, SAD</td>
</tr>
<tr>
<td>Metanol</td>
<td>J. T. Backer, SAD</td>
</tr>
<tr>
<td>Cinkov sulfat heptahidrat</td>
<td>Merck, SAD</td>
</tr>
<tr>
<td>NaCl</td>
<td>Kemika, Hrvatska</td>
</tr>
<tr>
<td>Sudan crveno B</td>
<td>Kemika, Hrvatska</td>
</tr>
<tr>
<td>Fosforna kiselina</td>
<td>Acros Organics, Belgija</td>
</tr>
<tr>
<td>Etanol (96 %)</td>
<td>Kemika, Hrvatska</td>
</tr>
</tbody>
</table>

3.1.4. HRANJIVA PODLOGA

Podloga korištena za šaržni uzgoj plijesni sadržavala je enzimski hidrolizat predobrađenog kukuruznog oklaska. Kukuruzni oklasak predobrađen je s 2% otopinom NaOH tijekom 18 h pri 50ºC. Ostale komponente podloge navedene su u Tablici 3. Molarni omjer izvora ugljika i dušika u podlozi (C:N) iznosio je 50 mol mol⁻¹.
Tablica 3. Sastav hranjive podloge za šaržni uzgoj plijesni Mortierella isabellina

<table>
<thead>
<tr>
<th>KOMPONENTA HRANJIVE PODLOGE</th>
<th>KONCENTRACIJA (gL⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kvaščev ekstrakt</td>
<td>1</td>
</tr>
<tr>
<td>Kalijev dihidrogenfosfat</td>
<td>7</td>
</tr>
<tr>
<td>Dinatrijev hydrogenfosfat</td>
<td>2</td>
</tr>
<tr>
<td>Magnezijev sulfat heptahidrat</td>
<td>1,5</td>
</tr>
<tr>
<td>Kalcijev klorid dihidrat</td>
<td>0,1</td>
</tr>
<tr>
<td>Željezov (III) klorid hekstahidrat</td>
<td>0,08</td>
</tr>
<tr>
<td>Cinkov sulfat heptahidrat</td>
<td>0,001</td>
</tr>
<tr>
<td>Kobaltov nitrat monohidrat</td>
<td>0,001</td>
</tr>
<tr>
<td>Bakrov sulfat pentahidrat</td>
<td>0,001</td>
</tr>
<tr>
<td>Manganov sulfat pentahidrat</td>
<td>0,001</td>
</tr>
<tr>
<td>Diamonijev sulfat</td>
<td>0,82</td>
</tr>
</tbody>
</table>

3.1.5. UREĐAJI I OPREMA

3.1.5.1 UREĐAJ ZA VISOKO DJELOTVORNU TEKUĆINSKU KROMATOGRAFIJU (HPLC)

Konzentracija gluukoze i ksiloze u supernatantima uzoraka izuzetih tijekom uzgoja određena je pomoću uređaja za kromatografiju Shimadzu CLASS-VP LC-10AVP (Shimadzu; Kyoto, Japan).

Uređaj se sastoji od: crpke (LC-10ADVP), otplinjača (DGU-14A), automatskog uzorkivača (SIL-10ADVP), uređaja za grijanje kolone (CTO-10AVP), analitičke kolone (ionsko - izmjenjivačka kolona Supelcogel™ C-610H; 30 cm x 7,8 mm i.d., 9 µm; SigmaAldrich Co. (LLC), St. Louis, SAD) s predkolonom (Supelcogel™ H; 5 cm x 4,6 mm i.d., 9 µm; Sigma-Aldrich Co. (LLC), St. Louis, SAD), detektora indeksa loma (RID-10A), modula za kontrolu sustava (SCL-10AVP) i računalnog programa za kromatografiju (CLASS-VP v6.10).
3.1.5.2 OSTALA OPREMA I UREĐAJI
Osim navedenih uređaja korišten je osnovni laboratorijski pribor odnosno stakleno posuđe, plamenici, hladnjak (+4 ºC), zamrzivač (-20 ºC), osobno računalo, mikroskop, boca s dušikom i uređaji navedeni u Tablici 4.

Tablica 4. Uređaji korišteni u istraživanju.

<table>
<thead>
<tr>
<th>UREĐAJ</th>
<th>PROIZVOĐAČ, ZEMLJA PROIZVODNJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tehnička vaga</td>
<td>Tehnica ET – 1111, Slovenija</td>
</tr>
<tr>
<td>Analitička vaga</td>
<td>Sartorius Group, Njemačka</td>
</tr>
<tr>
<td>Tresilica</td>
<td>Sartorius Group, Njemačka</td>
</tr>
<tr>
<td>Magnetska miješalica</td>
<td>Tehnica ET – 1111, Slovenija</td>
</tr>
<tr>
<td>Sušionik</td>
<td>Instrumentaria ST-50, Hrvatska</td>
</tr>
<tr>
<td>Centrifuga</td>
<td>Sanyo, Velika Britanija</td>
</tr>
</tbody>
</table>

3.2. METODE

3.2.1. UZGOJ ČISTE KULTURE PLIJESNI
Kultura plijesni Mortierella isabellina uzgojena je na čvrstoj podlozi s krumpirovim bujonom (PDA). Podloga je pripremljena otapanjem 20 g L\(^{-1}\) agara i iste količine glukoze u krumpirovom bujonu. Nakon formiranja spora (10-14 dana) kultura je čuvana na +4 ºC, a suspenzija spora plijesni dobivena je struganjem mikrobiološkom ušicom s površine podloge. Suspenzija je profiltrirana kroz sterilnu gazu i korištena za uzgoj u tikvicama.

Kruppirov bujon pripremljen je kuhanjem 150 g narezanog krumpira u 0,5 L vode. Nakon kuhanja bujon je profiltriran kroz sterilnu gazu, a dobiveni filtrat je korišten za pripremu podloge.

3.2.2. UZGOJ PLIJESNI U TIKVICAMA
Uzgoj plijesni za inokulum provodio se preko noći u podlozi dobivenoj otapanjem 20 gl\(^{-1}\) glukoze i 4 gl\(^{-1}\) kvaščegovog ekstrakta u krumpirovom bujonu. 100 mL hranjive podloge nacijepljeno je s 20 mL prethodno dobivene otopine spora koncentracije 7,38*10\(^7\) spora po mililitru.
3.2.3. PRIPREMA HIDROLIZATA KUKURUZNIH OKLASAKA ZA UZGOJ PLIJESENI

Predobrađena usitnjena lignocelulozna sirovina podvrgnuta je enzimskoj hidrolizi u tikvici. Koncentracija suhe tvari sirovine iznosila je 150 gL⁻¹, a koncentracija celulitičkih enzima Cellic CTec2 30 FPU po gramu glukana u sirovini (7 mL enzimskog pripravka) (Slika 6.). Enzimski pripravak prethodno je filtriran kroz mikrobiološki filter (veličine pora 0,2 µm), a zbog dodatne zaštite od kontaminacije dodan je i antibiotik ampicilin (60 mgL⁻¹). Reakcija se provodila uz 50 mM citratni pufer (pH 5,0). Enzimska hidrolioza provedena je kroz 72 sata pri 50 ºC na magnetskoj miješalici. Suspenzija je prije uzgoja centrifugirana, a talog odbačen.

Slika 6. Kukuruzni oklasci prije i nakon enzimske hidrolize (vlastita fotografija)

3.2.4. UZGOJ PLIJESENI U TIKVICAMA NA LIGNOCELULOZNOM HIDROLIZATU

Dobiveni lignocelulozni hidrolizat korišten je kao izvor ugljika za uzgoj plijesni Mortierella isabellina i proizvodnju lipida. Uzgoj je proveden u Erlenmayerovim tikvicama na tresilici (140 o min⁻¹) kroz 20 dana pri 30 ºC. Korištene su tikvice volumena 300 mL u kojima je volumen sterilne hranjive podloge iznosio 40 mL. Tikvice su nacijepljene s prekonoćnom kulturom plijesni Mortierella isabellina volumena 4 mL (10% volumena podloge). Tijekom uzgoja svaki dan se izuzimao uzorak i provodila se analiza prevrele podloge s ciljem određivanja količine nakupljenih lipida i potrošenog izvora ugljika (glukoze i ksiloze). Sadržaj tikvice filtrirao se vakuum filtracijom, a zatim su filtrat i filtracijski kolač (biomasa plijesni) bili podvrgnuti daljnjim analizama.
3.2.5. ANALIZA UZORAKA

3.2.5.1. ODREĐIVANJE UDJELE LIPIDA

Biomasa dobivena filtracijom podvrgnuta je sušenju pri 50 °C kroz 24 h. Udio vlage u uzorku određen je naknadno dosušivanjem uzoraka pri 105 °C do konstantne mase. Izmjerena je masa uzorka i određena koncentracija biomase u podlozi. Za određivanje udjela lipida dobivenu biomasu bilo je potrebno usitniti u tarioniku u fini prah, a zatim je odvagano po 200 mg u epruvete za ekstrakciju. Ekstrakcija lipida provedena je smjesom otapala kloroforma i metanola prema propisu Schneitera i Dauma (2006) i Folch i sur. (1957). U svaku epruvetu za ekstrakciju dodano je po 2 mL metanola, 0,3 mL vode i 4 mL kloroforma. Ekstrakcija je provedena preko noći na tresilici (140 o min⁻¹). Dobivena suspenzija je zatim filtrirana kroz sinter lijevak uz ispiranje filtracijskog kolača sa smjesom otapala korištenih za ekstrakciju radi što boljeg iskorištenja. Proteini u ekstraktu uklonjeni su taloženjem s 0,1% NaCl-om (20% volumena filtrata). Nakon dodatka NaCl-a sadržaj u epruveti promiješan je na vorteksu. Nakon odvajanja kloroformske faze s lipidima i vodene faze, istaloženi proteini su se nalazili na granici između dvije faze. Donja kloroformska faza izdvojenja je pažljivo pomoću plastične šprice s iglom i premiješena u suhu izvaganu epruvetu. Otapalo iz ekstrakta uklonjeno je propuhivanjem plinovitim dušikom. Lipidi su dodatno osušeni kroz 4 h na 100 °C radi uklanjanja eventualno zaostale vode i organskih otapala, a potom izvagani. Udio lipida u biomasi plijesni Mortierella isabellina izračunat je prema jednadžbi (1).

Slika 7. Epruveta s ekstrahiranim lipidima (vlastita fotografija)
\(w(L) = \frac{m_e - m_p}{m_x} \times 100 \% \) (1).

\(m_e = \text{masa epruvete s lipidima (g)} \)

\(m_p = \text{masa prazne epruvete (g)} \)

\(m_x = \text{masa biomase plijesni (g)} \)

\(w_{H2O/x} = \text{udio vlage u biomasi plijesni (%)} \)

Biomasa plijesni korigirana je za udio vlage zaostao nakon sušenja pri 50 °C dodatnim sušenjem pri 105 °C prema jednadžbi (2):

\[w_{H2O/x} = \left(1 - \frac{1}{m_{\text{prije sušenja}}} \right) \times 100 \% \] (2).

\(m_{\text{prije sušenja}} = \text{masa biomase prije sušenja (g)} \)

\(m_{\text{poslije sušenja}} = \text{masa biomase nakon sušenja na 105 °C (g)} \)

3.2.5.2. ODREĐIVANJE KONCENTRACIJE FERMENTABILNIH ŠEĆERA POMOĆU TEKUĆINSKE KROMATOGRAFIJE VISOKO UČINKOVITOSTI (HPLC)

HPLC metodom analizirani su svi uzorci izuzimani tokom uzgoja radi praćenja koncentracije ksiloze i glukoze. Prije analize potrebno je u uzorcima hranjive podloge ukloniti proteine. Proteini su uklonjeni taloženjem dodatkom 10% otopine cinkova sulfata heptahidrata. Hranjiva podloga i ZnSO₄ x 7 H₂O pomiješani su u omjeru 1:1 (vol/vol). Taloženje se provodilo 10 minuta, a zatim su se istaloženi proteini uklonili centrifugiranjem. Supernatanti su razrijeđeni destiliranom vodom još pet puta i filtrirani u vijalice kroz filter za šprice veličine pora 0,22 µm. Zatim su pripremljeni uzorci podvrgnuti analizi na HPLC-u. Koncentracija šećera izračunata je prema jednadžbi baždarnih pravaca. Baždarni pravci dobiveni su analizom standardnih otopina glukoze i ksiloze (0,5, 1,0, 2,0, 4,0, 5,0, 7,0, 10,0 gL⁻¹). Kao pokretna faza tokom analize korištena je otopina fosforne kiseline u vodi (0,1% vol/vol), temperatura kolone iznosila je 55°C, tlak 30 bara, a injektirano je 20 µL uzorka, odnosno otopina standarda. Vremena zadržavanja pojedinih šećera na koloni, kao i jednadžbe pravaca potrebnih za izračun koncentracija navedeni su u Tablici 5.
Tablica 5. Vremena zadržavanja i jednadžbe pravca glukoze i ksiloze.

<table>
<thead>
<tr>
<th>ŠEĆER</th>
<th>VRIJEME ZADRŽAVANJA (tₐ)</th>
<th>JEDNADŽBA PRAVCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glukoza</td>
<td>13,093 min</td>
<td>y = 377242,1858x - 4487,0600</td>
</tr>
<tr>
<td>Ksiloz</td>
<td>13,888 min</td>
<td>y = 362057,0878x+5598,6137</td>
</tr>
</tbody>
</table>

3.2.5.3. BOJANJE LIPIDA U UZORCIMA

Slika 8. Mikroskopski preparat staničnih nakupina lipida plijesni Mortierella isabellina obojan s Sudan crvenim B (400x) (vlastita fotografija)
3.2.5.4. PRORAČUN PARAMETARA USPJEŠNOSTI BIOPROCESA

Prvi pokazatelj uspješnosti bioprocesa je koeficijent pretvorbe supstrata u biomasu koji se računa prema jednadžbi (3):

\[Y_{Xb/S} = \frac{X_b}{S} \quad (g g^{-1}) \quad (3). \]

\[X_b = \text{koncentracija biomase bez lipida (gL}^{-1}) \]
\[S_0 = \text{koncentracija supstrata na početku uzgoja (gL}^{-1}) \]
\[S = \text{koncentracija supstrata (gL}^{-1}) \]

Koeficijent pretvorbe supstrata u lipide nastale tijekom uzgoja računat je prema jednadžbi (4):

\[Y_{LS} = \frac{W_l \cdot X}{S} \quad (g g^{-1}) \quad (4). \]

\[W_l = \text{udio lipida u biomasi (%)} \]
\[X = \text{koncentracija biomase (gL}^{-1}) \]

Produktivnost sinteze biomase bez lipida izračunata je prema jednadžbi (5), a produktivnost sinteze lipida izračunata je prema jednadžbi (6):

\[Pr_{Xb} = \frac{X_b}{S \cdot t_u} \quad (gL^{-1} \cdot dan^{-1}) \quad (5). \]

\[X_b = \text{koncentracija biomase bez lipida na početku uzgoja (gL}^{-1}) \]
\[t_u = \text{ukupno vrijeme procesa (dan)} \]
\[Pr_l = \frac{W_l \cdot X}{S \cdot t_u} \quad (gL^{-1} \cdot dan^{-1}) \quad (6). \]
4. REZULTATI I RASPRAVA

U ovom istraživanju proveden je uzgoj oleaginozne plijesni *Mortierella isabellina* na tresilici kroz 20 dana pri optimalnoj temperaturi od 30 °C i pH 5,0 optimalnom za rast i sintezu lipida (opisano u poglavlju 3.2.4.). Uzgoj se provodio u 24 tikvice u kojima su vladali jednaki uvjeti, a svakih 24 sata uzgoja izuzimana je po jedna ili dvije tikvice radi određivanja koncentracije izvora ugljika te sastava i koncentracije biomase. Uzgoj je započeo u optimalnim uvjetima s dovoljnom koncentracijom fermentabilnih šećera (glukoza i ksiloz) kao izvorom ugljika i različitih kompleksnih ili anorganskih izvora ostalih biogenih elemenata. Izvor dušika u podlozi bio je kvaščev ekstrakt i diamonijev sulfat. Plijesan koja je podvrgnuta istraživanju oleaginozni je mikroorganizam i ima sposobnost nakupljanja staničnih lipida u uvjetima limitacije rasta nekim od biogenih elemenata podloge (npr. dušik, fosfor, željezo itd).

Limitacija rasta stanice najčešće je uzrokovana limitacijom izvorom dušika, odnosno nakupljanje lipida započinje kada koncentracija dušika u podlozi padne ispod 10% početne vrijednosti uz uvjet da je koncentracija izvora ugljika u suvišku. Oleaginozni mikroorganizmi tada asilimilirani izvor ugljika usmjeravaju u sintezu lipida, za razliku od neoleaginoznih koji troše ugljikohidratni supstrat za sintezu polisaharida (npr. škrob, glikogen, trehaloza itd.), odnosno rezervnih tvari u organizmu (Ratledge, 2004.).

Izvor ugljika u ovom istraživanju dobiven je hidrolizom kukuruznih oklasaka iz područja Hrvatskog Zagorja. Hidroliza sirovine prethodno je opisana u poglavlju 3.2.3., a fermentabilni šećeri koji su prevladali u podlozi su glukoza i ksiloz. U uzorcima prevrele podloge tokom istraživanja praćena je promjene njihove koncentracije HPLC-om (3.2.5.2). Osim potrošnje izvora ugljika, praćen je udio nakupljenih lipida i rast biomase prikazanih na Slici 9. i 10.

Prinos biomase plijesni s lipidima iznosio je 20,251 g L⁻¹, a prinos samih lipida 10,569 g L⁻¹. Harde i sur. (2016) proveli su slično istraživanje uzgoja s plijesni *Mortierella isabellina* na glukozi i ksiloz kao izvoru ugljika i dobili gotovo iste vrijednosti prinosa biomase i lipid. Ostali izračunati parametri uspješnosti bioprocesa prikazani su u Tablici 6.
Tablica 6. Izračunati parametri uspješnosti bioprosesa

<table>
<thead>
<tr>
<th>PARAMETAR</th>
<th>REZULTAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y_{Xb/S}$ (gg(^{-1}))</td>
<td>0,09910 (20.dan uzgoja)</td>
</tr>
<tr>
<td>$Y_{L/S}$ (gg(^{-1}))</td>
<td>0,10241 (20.dan uzgoja)</td>
</tr>
<tr>
<td>Pr_{xb} (gL(^{-1})dan(^{-1}))</td>
<td>0,74260 (11.dan uzgoja) 0,48414 (20.dan uzgoja)</td>
</tr>
<tr>
<td>Pr_{l} (gL(^{-1})dan(^{-1}))</td>
<td>0,87115 (11.dan uzgoja) 0,53071 (20.dan uzgoja)</td>
</tr>
</tbody>
</table>

Usporedbom dobivenih rezultata s literaturnim podacima pronalazimo istraživanje uzgoja plijesni *Mortierella isabellina* na alkalnom hidrolizu kukuruznog oklaska koje su proveli Ruan i sur. (2012) gdje su uzgojem postigli produktivnost (Pr_{l}) od 0,64800 gL\(^{-1}\)dan\(^{-1}\), udio lipida 29,5% i prinos lipida od 2,48 gL\(^{-1}\). Literaturno istraživanje vođeno je znatno kraće (80 sati) nego ovdje opisano istraživanje, zato su prinos lipida i udio lipida manjih vrijednosti. Iz Tablice 6. vidljivo je da se maksimalne produktivnosti vođenog procesa (Pr_{l}, Pr_{xo}) postižu jedanaestog dana uzgoja, nakon čega vrijednosti opadaju. Za postizanje optimalnih rezultata, uzgoj bi se trebao voditi kraće vrijeme, ali dovoljno dugo da se potroši veći dio fermentabilnih šećera podloge. Koeficijenti konverzije supstrata u biomasu i lipide izračunati su na kraju uzgoja kada je izvor ugljika potpuno utrošen. Koeficijent konverzije supstrata u biomasu bez lipida iznosio je 0,0991 gg\(^{-1}\), a koeficijent konverzije supstrata u lipide 0,10241 gg\(^{-1}\).
Slika 9. Prikaz promjene koncentracije biomase i lipida u vremenu.

Slika 10. Prikaz promjene udjela lipida u biomasi u vremenu.

Slika 11. Prikaz promjene koncentracije glukoze i ksiloze u vremenu
5. ZAKLJUČAK

Na temelju provedenog istraživanja može se zaključiti:

1. Lignocelulozna sirovina građena je od tri polimera: celuloze, hemiceluloze i lignina. Lignin i hemiceluloza, koji obavijaju lance celuloze u lignoceluloznoj sirovini, onemogućavaju fizički kontakt enzima celulaza sa supstratom (celulozom) i smanjuju učinkovitost enzimske hidrolize sirovine s celulazama.

2. Alkalnom predobradom prethodno usitnjene lignocelulozne sirovine smanjuje se udio lignina i hemiceluloze, dok se udio celuloze povećava. Također se smanjuje kristaličnost nativne celuloze, a njezini lanci postaju dostupni celulolitičkim enzimima čime se poboljšava učinkovitost celulolitičke razgradnje lignocelulozne sirovine.

3. Najzastupljeniji fermentabilni šećeri u korištenom enzimskom hidrolizatu kukuruznog oklaska su glukoza (66,498 gL⁻¹) i ksilozu (38,005 gL⁻¹).

4. Plijesan Mortierella isabellina koristi šećere glukozu i ksilozu iz enzimskog hidrolizata kukuruznog oklaska za rast i sintezu lipida. Plijesan šećere troši redoslijedno, prvo glukozu, a zatim ksilozu.

5. U uvjetima limitacije dušika u podlozi plijesan Mortierella isabellina koristi izvore ugljika za sintezu značajnih količina staničnih lipida. Najveći udio lipida postignut je osmog dana uzgoja plijesni i iznosi 62,029%.

6. Najveća produktivnost sinteze lipida iznosi 0,87115 gL⁻¹dan⁻¹, a produktivnost sinteze biomase bez lipida iznosi 0,74260 gL⁻¹dan⁻¹ i postignute su jedanaestog dana uzgoja plijesni. Daljnjim uzgojem plijesni produktivnosti se smanjuju.

7. Iscrpljivanjem izvora ugljika (glukoze i ksiloze) u podlozi plijesan Mortierella isabellina koristi nakupljene lipide za endogeni metabolizam stanice.
6. LITERATURA

Izjava o izvornosti

Izjavljujem da je ovaj završni rad izvorni rezultat mojeg rada te da se u njegovoj izradi nisam koristio drugim izvorima, osim onih koji su u njemu navedeni.

Marija Tomić