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1. INTRODUCTION 

Increasing global demand for energy together with global warming and decreasing 

reserves makes it obvious that fossil fuels must be replaced by alternative sources such as 

renewable energies (Dimarogona et al., 2012). The largest and also the most promising source 

for the production of fuels is biomass. In the form of energy, it provides around 10% of the 

global energy supply. Bioethanol is the biofuel which is produced in the biggest volume with 

an annual production of 84 billion liters (2010) projected to reach 175 billion liters until this 

year (2017). Present bioethanol is mostly produced from starch and sugars which are also 

potential food sources. A lot of researches have been done in order to develop biofuels based 

on biomass such as algal biomass or lignocellulosic materials, which are not used as food. 

Biofuels developed from lignocellulosic biomass are second-generation biofuels and can be 

produced in two ways, with thermochemical or biochemical processes (Horn et al., 2012).  Of 

main interest are biochemical processes with lignocellulosic biomass. The conversion of 

lignocellulosic biomass to ethanol consists of two processes: cellulose and hemicellulose have 

to be degraded into simple sugars (saccharification) and afterwards these sugars are converted 

to ethanol by microorganisms (Dimarogona et al., 2013). The most sustainable technology for 

saccharification is enzyme technology, but there are limiting factors like the disparity of the 

plant cell wall and the recalcitrance of the individual components (cellulose, hemicelluloses, 

lignin). Formerly it was thought that only hydrolytic enzymes have a part in the degradation 

of these components. This system consists of enzymes acting randomly in the polysaccharide 

chain and acting at chain ends (Horn et al., 2012). However, because of the crystallinity of 

polysaccharide chains, which are tightly packed and not accessible for hydrolases, this 

mechanism was reconsidered when lytic polysaccharide monooxygenases (LMPOs) were 

discovered. The discovery of LPMOs was a significant breakthrough in our understanding of 

how nature degrades recalcitrant biomass (Hemsworth et al., 2013; Hemsworth et al., 2015). 

LPMOs are copper-dependent monooxygenases which require molecular oxygen and an 

external electron donor to function properly. These enzymes enhance efficiency of cellulases 

by acting on the surface of the insoluble substrate (Dimarogona et al., 2013; Kittl et al., 2012). 

Because of very big importance of LPMOs in the future degradation of biomass, the aim of 

this thesis was to develop and validate an activity assay (pH and temperature effects, limit of 

detection) and concomitantly characterize the LPMO from the fungi Neurospora crassa 

(NcLPMO9C, also known as NcU02916). 
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2. THEORY 

2.1. ENZYME ASSAYS 

Enzyme assays are done for two reasons, to identify an enzyme and prove its presence 

or absence in given sample and to determine the amount of an enzyme in the assay. There are 

two different approaches for enzyme assays: qualitative, in which positive or negative result is 

satisfactory and quantitative approach, in which data should be as accurate as possible. 

Enzymes have the advantage that they can be identified by their catalyzed reaction, but the 

problem is that even the same assay performed under identical conditions may yield different 

results because enzyme activity depends on numerous factors and general understanding of 

distinct enzyme is required, which cannot be described in all details in the enzyme assay 

protocol. Nature and strength of ions, pH and temperature are the conditions that must be 

strictly monitored if assays want to be reliably compared. Because of the great diversity of 

enzymes, assay procedures are adjusted to the features of the individual enzyme. When 

determining enzyme assay, it has to be considered that enzyme reactions depend not only on 

conditions mentioned above, but also on the concentration of all assay components. It is also 

important to be aware that compounds not directly involved in the reaction can influence the 

results (interactions of hydrophobic substances or detergents with the protein surface, metal 

ions, etc.).  

Although each enzyme has its own characteristics and properties, there are some 

general rules valid for all enzyme assays. The aim of every assay is to monitor the time-

dependent conversion of substrate in the product and procedure must have the ability to 

identify it. Since product formation is directly connected with the disappearance of the 

substrate, its decreasing can be a measure of the reaction. In case of two or more substrates, it 

is enough to measure only one of them. The main problem in measuring is that every method 

is more or less susceptible to scattering. It can have different origins and some of them cannot 

be avoided (instability of the instruments or measurements in turbid solutions), but some of 

them can at least be reduced by careful handling (contaminations, dust, air bubbles, etc.). It is 

also very important that only the observed component shows the signal (e.g. absorption), so 

the reaction actually starts at zero and any change in signal refers to ongoing reaction.  

The simplest way to monitor the reaction is appearance and disappearance of the 

coloured compound. Invisible UV range can also be observed with spectrophotometers, and 

since practically all the compounds show absorption in this area, this extends the observation 
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range remarkably. Spectrophotometers are easy to handle and have low sensibility against 

disturbances so they are used very often. On the other hand, if an enzymatic reaction cannot 

be observed this way, some other optical methods (e.g. fluorimetry) are used. Beside optical 

methods, electrochemical methods are also in use. The mentioned methods can perform 

continuous and discontinuous assays. Continuous assays are very important in detecting 

reaction velocity and for evaluating the enzyme activity. They also enable detection of 

incorrect influence and the control of the reaction course (progress curve). Catalyzed reactions 

initially show a linear correlation, however, the substrate consumption slows down and finally 

breaks off the reaction. Therefore it is very important to determine enzyme velocity from the 

linear part of the curve. In order to determine velocity for a discontinuous (stopped) assay, 

reactions must be stopped after some time and the sample has to be analyzed with a separation 

method like HPLC. These methods provide only one single point and velocity is calculated 

from the slope of a line connecting that point and the blank (Bisswanger, 2014).  

 

2.1.1. Dependence on substrates  

Beside the enzyme, substrates and cofactors are the main components of the enzyme 

assay. Their purity, stability and state are crucial and therefore the highest demands have to be 

made. Usually, enzymes have a defined substrate according to their physiological function, 

however, many enzymes show wide specificity. A synthetic one can replace physiological 

substrate. In order to determine efficiency of the substrate, KM and Vmax values are calculated. 

The lower the KM, the better is the affinity to the substrate. It is not always the case to take the 

most efficient substrate, because availability, stability, solubility and the accessibility to a 

detection method have to be considered. The conclusion is that a physiological substrate is not 

always used, because to compare results it is more important to use the same substrate in all 

assays (Bisswanger, 2014).   

 

2.1.2. Buffers and ions 

Assays have to be done in buffers due to their role in adjustment and stabilization of 

the desired pH value. They consist of a weak acid and strong basic component. Not only pH 

range is important when choosing the buffer, but also its ionic strength, concentration and the 
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nature of its components. The more concentrated buffer system, the higher is the ability to 

stabilize the desired pH. However, the best concentration range is from 0.05 to 0.2 M. Ions 

affect enzyme activity both by their nature and ionic strength. The activity of an enzyme can 

differ if observed in two different buffer systems, even though they have the same pH and 

concentration. The capacity range of buffer is narrow, so if a broader pH range is required, 

several buffer systems can be combined (Bisswanger, 2014). 

 

2.1.2.1. Solvents 

Because of the cellular environment, water is the standard solvent for enzyme assays. 

However, for some enzymes, organic solvents have to be used in order to ensure that an 

essential component, which is not soluble in water, is also dissolved (Bisswanger, 2014). 

 

2.1.3. Influence of pH 

pH in the assay mixture can have big influence in enzyme activity. Most enzymes 

follow a bell-shaped curve, showing zero activity in the strong acid region, followed by 

increase up to the maximum value and decrease to zero in the strong alkaline region. This is 

the consequence of two effects, the native, three-dimensional protein structure of an enzyme 

and the state of protonation of the functional groups of amino acids and cofactors involved in 

the reactions. The maximum of the bell-shaped curve shows the highest activity of an enzyme 

and pH detected at this value is the pH optimum, which is usually chosen as the standard pH 

used in the assay of the distinct enzyme. The pH optimum of many enzymes is within the 

physiological range, ~7.5 (Bisswanger, 2014). 

 

2.1.4. Influence of temperature 

The curve showing correlation between temperature and enzyme activity is also bell-

shaped as in previous case, increasing with rising temperature, reaching the maximum and 

decreasing afterwards. The maximum is also referred to temperature optimum, however, that 

temperature does not necessarily exist for all enzymes. The velocity of any chemical reaction 
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increases with the temperature, ~2-3 times every 10°C. On the other hand, 3D structure of 

enzymes is thermo-sensitive and high temperature can lead to denaturation, which is 

responsible for decrease of the activity. Therefore, for enzymes that have not been 

investigated yet, it should be ensured that the assay temperature is within the stability range. 

That temperature is determined by plotting activity versus different temperatures. After 

Arrhenius plot is made, the lower temperature range should be a straight line, indicating the 

area of stable enzyme. Because of denaturation, a straight line should show deviations in 

higher temperature range. One of three favoured temperatures is usually chosen, 25, 30 or 

37°C (Bisswanger, 2014). 

 

2.1.5. Limit of Detection (LoD) 

One of the very important conditions is that substrate and product differ in observed 

characteristics. The product may be very well detected with the chosen method, but if the 

substrate shows a similar signal, no turnover can be observed. Often both substrate and 

product show a small difference in signal which is hard to quantify because the small signal 

becomes lost within the noise. As a rule, intensity of the reaction signal must be one or two 

factors higher than the noise. This is the reason why the limit of detection is determined 

(Bisswanger, 2014). 

If an analyte (enzyme) is present, the produced signal should be high enough to 

reliably be distinguished from the analytical noise (signal produced in the absence of analyte). 

LoD is the lowest analyte concentration that can be reliably emphasized from the LoB. LoD is 

determined by using both the measured LoB and samples known to contain a low 

concentration of analyte. LoD = LoB + 1.645(SDlow concentration sample). Assuming a Gaussian 

distribution of the low concentration samples, 95% of values will go beyond the previously 

defined LoB, and only 5% of low concentration samples will go below the LoB and 

incorrectly appear to contain no analyte. A typical approach to estimate LoD consists of 

measuring replicates, usually ~20, of a blank sample, determining the mean value and 

standard deviation (SD), and calculating LoD as the mean +2x SD. The mean +3, 4 or even 

10x SD can also be calculated, to provide a more conservative LoD. (Armbruster and Pry, 

2008). 
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2.1.5.1. Limit of Blank (LoB) 

Limit of Blank is defined as the highest apparent analyte concentration expected to be 

found when testing the replicates of a sample which contains no analyte. It is important that 

although there is no analyte, a blank can produce an analytical signal that might be in 

accordance with a low concentration of analyte. Detection of LoB is done by measuring 

replicates of a blank sample and then calculating the mean value and the SD (LoB = mean 

blank + 1.645(SDblank). Again assuming a Gaussian distribution of the raw analytical signals 

from blank samples, the LoB represents 95% of the observed values. The other 5% can be a 

response that could be produced by a sample which contains a very low analyte concentration 

(Armbruster and Pry, 2008). 

 

2.1.6. Enzyme kinetics 

One of the most important approaches in studying the mechanism of enzymatic 

reactions is to determine the rate of the reaction and how changing experimental parameters 

influences it. A key factor that affects the rate is the substrate concentration [S], which can be 

complicated by the fact it changes during in vitro reaction because it is converted into 

product. Usually, kinetic experiments are simplified by measuring initial rate (initial velocity, 

V0), when concentration of substrate is much higher than the concentration of an enzyme [E]. 

If only the beginning of the reaction is monitored, [S] can be regarded as a constant and V0 

can be explored as a function of [S]. In a case when [E] remains constant and [S] is changing, 

the effect on V0 is shown in Figure 1. When [S] is low, the slope is almost linear and by 

increasing [S], the velocity is also increasing proportionally to [S]. Finally, the curve reaches 

a plateau where velocity is constant. This region is close to maximum velocity, Vmax. The 

substrate concentration at ½ Vmax is the Michaelis constant; KM (Nelson and Cox, 2012). 
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Figure 1. Michaelis-Menten curve of an enzyme reaction showing the relation between 

substrate concentration [S] and initial velocity (V0) (Nelson and Cox, 2012). 

The curve in Figure 1 has the same general shape as the rectangular hyperbola for 

most enzymes. It can be expressed algebraically by the Michaelis-Menten equation:  

V0=
Vmax * [S]

KM + [S]
 [1] 

 

The KM is often used as an indicator of the affinity of an enzyme for its substrate 

(Nelson and Cox, 2012).  

 

2.2. LIGNOCELLULOSIC BIOMASS 

 

Lignocellulosic biomass is a renewable resource which can substitute fossil resources 

for the production of biofuels (Isaksen et al., 2014). There are three different types of 

lignocellulosic biomass: graminaceous plants (grasses), gymnosperms (softwoods) and 

angiosperms (hardwoods) (Horn et al., 2012). Nonedible plant material is composed mostly of 

two polysaccharides: cellulose and hemicellulose. Third major component is lignin, very 

important phenolic polymer that ensures structural strength to the plant (Sluiter et al., 2010). 

Apart from latter, there are also minor components such as proteins, soluble sugars, minerals, 
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lipids and pectin. Three major polymers are interlinked in a hetero-matrix and their abundance 

varies depending on the type of biomass (Horn et al., 2012). 

The percentage of cellulose in natural lignocellulosic biomass is about 25 to 50%, 20 

to 40% of hemicellulose and 5 to 35% of lignin. In the plant cell walls, the cellulose fibrils 

form a skeleton surrounded by hemicellulose and a lignin layer. Because of the plant material 

and barrier properties of lignin, this biomass cannot be easily degraded (Ioelovich and Morag, 

2012). Lignocellulosic biomass structure is visible in Figure 2. 

 

 

 

Figure 2. Structure of lignocellulosic biomass (Kobayashi and Fukuoka, 2013). 

 

2.2.1. Cellulose 

Cellulose is a linear polysaccharide which consists of hundreds to over ten thousand 

repeating β-(1,4)-D-glucose units (Figure 3), alternately rotated by 180°, that construct 

parallel glucans into crystalline microfibrils (Dimarogona et al., 2013). They are connected 

and stabilized via hydrogen bonds and van der Waals interactions. Microfibrils are non-

soluble and therefore hardly accessible for enzymatic saccharification. In spite of that, there is 

one big advantage of cellulose, its homogeneity, which leads after complete depolymerization 

to only one product, glucose. (Horn et al., 2012).  
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Figure 3. (Partial) structure of cellulose (Hemsworth et al., 2013). 

 

2.2.2. Hemicellulose 

Hemicellulose has a large variety, not only between plants, but also even within one 

plant species and its tissue. It is composed of heterogeneous polysaccharides that contain 

hexoses (e.g. glucose, mannose), pentoses (e.g. xylose, arabinose) and sugar acids like acetic 

and galacturonic (Dimarogona et al., 2013). Hemicelluloses degradation is easier for enzymes 

compared to cellulose, however, some oligomers have complex branching and acetylation 

patterns which make them recalcitrant. Because of their heterogeneity, depolymerisation of 

hemicelluloses yields a mixture of different sugars which may contain pentoses that are 

difficult to ferment. (Horn et al., 2012).   

 

2.2.3. Lignin 

Lignin is the name of a group of substances that has large variety depending on 

different parts and different species of plants and length of growing season. It is a 

polyphenolic polymer with a three-dimensional network, a complex composed of 

phenylpropane units linked randomly and nonlinearly. Three main monomers (monolignols) 

are coniferyl alcohol, sinapyl alcohol and p-coumaryl alcohol. They are incorporated into 

lignin in the form of guaiacyl (G), syringyl (S) and p-hydroxyphenyl (H), respectively (Figure 

4). In lignocellulosic biomass lignin is cross-linked with carbohydrates via e.g. glucuronic 

acid by ether or ester linkages (Chen, 2014; Horn et al., 2012). 
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Figure 4. Basic structural units of lignin: A) Coniferyl alcohol, B) Sinapyl alcohol, C) 

Coumaryl alcohol (Chen, 2014). 

 

2.3. CHITIN 

Chitin (Figure 5) is a long chain polymer, crystalline analogue of cellulose, composed 

of N-acetyl-D-glucosamine (GlcNAc) linearly linked by β-1,4-glycosidic bonds. In its natural 

form, it is organized in crystalline arrangements that make up robust biological structure like 

crustacean cuticles. It is also widely distributed in the cell wall of fungi and yeast (Aachman 

et al., 2012; Dimarogona et al., 2012). 

 

 

Figure 5. Chemical structure of chitin (Rinaudo, 2006). 
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2.4. ENZYME CLASSIFICATION 

2.4.1. LPMO classification 

The CAZy (Carbohydrate Active Enzymes) database (CAZy.org, 2017) is a full-scale 

collection of enzymes acting on carbohydrates together with their carbohydrate-binding 

modules. They are classified according to their similarities in amino acid sequence 

(Hemsworth et al., 2015). LPMOs were first classified into carbohydrate-binding module 

family 33 (CBM33) and glycoside hydrolase family 61 (GH61) (Span and Marletta, 2015). 

These two families of enzymes are structurally similar and act synergistically with another 

class of enzymes called cellulases (Forsberg et al., 2011). GH61 largely consisting of fungal 

enzymes and CBM33 of mainly bacterial proteins (Hemsworth et al., 2015).  

After finding that these enzymes catalyze copper-dependent oxidative reactions, the 

name lytic polysaccharide monooxygenases (LPMOs) was adopted. (Isaaksen et al., 2014). 

The word “lytic” stands for the ability of these enzymes to break and loosen polysaccharide 

chains. Because of the importance of this oxidative degradation, CAZy redefined redox 

carbohydrate active enzymes into a new family with auxiliary activity (AA). GH61 was 

reassigned as family AA9 and CBM33 as AA10 (Hemsworth et al., 2015).  

Based on sequence characteristics, LPMOs are currently categorized as AA9-AA11 

and AA13 of the CAZy database. The AA10 family includes mostly bacterial enzymes, but 

also contains members from eukaryotic organisms and viruses. Several pathogenic bacteria 

produce AA10 type LPMO domains, which have been identified as virulence factors. Family 

AA9, AA11 and AA13 almost exclusively contain fungal enzymes (Borisova et al., 2015; 

Loose et al., 2014). Hemicellulose activity has been described for family AA9, cellulose 

activity for AA9 and AA10, chitin activity for families AA10 and AA11 and starch activity 

for family AA13 (Borisova et al., 2015).  

Characterization of LPMOs according to their polysaccharide bond preference and 

amino acid sequence has led to distribution into three types: LPMO-1 (type 1) release 

reducing end oxidized products (C1 oxidizing enzymes), LPMO-2 (type 2) act on non-

reducing end of the glucose moiety (C4 oxidizing enzymes) and LPMO-3 (type 3) releasing 

both C1 and C4-oxidized cello-oligomers which makes them less specific enzymes (C1 and 

C4 oxidizing enzymes) (Borisova et al., 2015; Dimarogona et al., 2013). 

 

http://www.cazy.org/
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2.4.2. Cellulases classification 

Glycoside hydrolases are a group of enzymes that hydrolyse the glycosidic bond 

between two or more carbohydrates or between non-carbohydrate and carbohydrate part of 

the molecule. The nomenclature of enzymes in this group is based on their substrate 

specificity and molecular mechanism. Cellulases (endo-β-1,4-glucanases) belong to GH 

Family 5 and GH Family 8. They are responsible for endohydrolisis of β-(1,4)-D-glycosidic 

bonds in cellulose, lichenin and cereal β-D-glucans (CAZy.org, 2017). 

 

2.5. LPMO STRUCTURES 

The first LPMO structures were resolved in 2008 using techniques like X-ray 

crystallography and NMR. Currently, there are 30 tertiary structures of LPMOs reported in 

the protein data bank (PDB, 2017); 12 structures are from the fungal AA9 family, 16 

structures from the bacterial AA10 family, and 1 structure in each AA11 and AA13 family 

(CAZy.org, 2017) (Figure 6).   
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Figure 6. Structural aspects of LPMO: A) AA9, B) AA10, C) AA11, D) AA13 (Hemsworth et 

al., 2015). 

All LPMOs have a similar global structure. The LPMO catalytic domain has a β-

sandwich fold that is very similar to the structure of both immunoglobulin (Ig) and fibronectin 

type III (Fn III) domains (Figure 7). This fold contains disulfide bonds, typically two or three. 

LPMO domains usually contain 200–250 amino acids, however, the number of residues 

depends on the cumulative loop length (Span and Marletta, 2015). Structural diversity is 

generated by the helices and loops that connect the core β-strands, providing variable 

dimensions and topologies of the substrate-binding surface (Vaaje - Kolstad, 2017).  

 

D C 

B A 
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Figure 7. LPMO domain (AA9, NcPMO3) compared to Ig and FnIII domains (Span and 

Marletta, 2015). 

LPMOs active site is positioned at the center of a flat surface, contrary to GH family 

enzymes, which have substrate-binding grooves or tunnels. Aromatic amino acids which 

surround the active side are proposed to bind cellulose (Hemsworth et al., 2013). The LPMO 

active site contains a single copper ion coordinated by the histidine brace which is an unusual 

arrangement that uses the amino group and sidechain of the N-terminal histidine together with 

a distal histidine sidechain to coordinate the copper in a T-shaped arrangement of nitrogen 

ligands. The N-terminal histidine is methylated at Nε residue in fungal LPMOs, while 

bacterial LPMOs do not have this modification (Span and Marletta, 2015) (Figure 8). Fungal 

LPMOs expressed in other systems, such as Pichia pastoris or Escherichia coli, which lack 

the machinery to make this modification, remain active on polysaccharides notwithstanding 

the lack of the methylated histidine (Hemsworth et al., 2015.).  

LPMO                                                                     Ig                                                            FnIII 
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Figure 8. Active site of an AA9 NcPMO3 (Span and Marletta, 2015). 

As mentioned above, regioselectivity of enzymes depends on helices and loops that 

connect the core β-strands, meaning that loop variation is particularly obvious in segments 

that form the substrate-binding interface. This is thought to be an evolutionary response to 

selective pressure around substrate availability. In Figure 7 three different loops are visible: 

L2 loop/motif 1 (red), LC loop (blue) and LS loop (yellow) (Span and Marletta, 2015).  

There are differences in structures of oxidized and reduced active site of LPMOs. In 

oxidized LPMOs, Cu(II) is coordinated by additional ligands in a distorted trigonal and 

octahedral bipyramidal geometry. Up to three additional ligands are oxygen atoms either from 

water, molecular oxygen or the axial tyrosine. In reduced LPMOs, coordination numbers are 

decreased consistent with Cu(I) coordination preferences. All LPMO families studied for now 

have conserved active-site hydrogen-bonding residues that interact with active-site water 

molecules and the active-site tyrosine ligand, if it is present (Span and Marletta, 2015). 

Bacterial LPMOs have different structure than fungal and their apical sites are not occupied 

by an oxygen atom from a water molecule or tyrosine as in fungal, but by alanine and 
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phenylalanine which are limiting the copper ion coordination to equatorial sites only 

(Dimarogona et al., 2013). Few functions are suggested for these residues such as hydrogen-

bonding to a substrate bound in the available equatorial position, modification of the 

electronic environment of the copper center and stabilization of the second histidine ligand 

(Span and Marletta, 2015). 

 

  2.6. LPMO ACTIVITY 

All LPMOs that were characterized showed activity either on cellulose or on chitin, 

indicating that these enzymes act on highly crystalline structure. Because of the fact that 

LPMOs are co-secreted by microorganisms that are included in biomass degradation and 

because of a wide variety of the sequences among LPMOs, it is hard to believe that these two 

are the only substrates for LPMOs (Agger et al., 2014). In further investigations it was shown 

that LPMOs are active not only on cellulose or chitin, but also on xylan, xyloglucan, 

glucomannan, lichenan, β-glucan, and starch (Span and Marletta, 2015).  

For catalyses, these enzymes required molecular oxygen as well as reducing agents. 

Electron donors can be small molecule reductants such as ascorbic or gallic acid, or enzymes 

such as cellobiose dehydrogenase (CDH), which are very often co-expressed with LPMOs 

(Isaksen et al, 2014). It is believed that oxidation leads to polysaccharide chain cleavage 

introducing new chain-ends. First, the copper atom is reduced and molecular oxygen is 

activated by LPMOs. Afterwards the copper-oxygen complex is able to attack the hydrogen 

either of the C1 or C4 of the glycosidic bond resulting in abstraction of the hydrogen and 

afterwards hydroxylating the carbon by the -OH group. The strength of the C-H bond is 

estimated to be at least 95 kcalmol-1. After hydroxylation at that position, an elimination 

reaction occurs which lead to destabilization and bond breakage of the glycosidic bond. This 

is an irreversible reaction because the carbon on the reducing or non-reducing ends had been 

oxidized (Beeson et al., 2011; Frandsen et al., 2016). Products of the reaction are oxidized 

oligosaccharides and native oligosaccharides that contain reducing ends originally present in 

the polymeric substrate. Products oxidized at C1 are initially in lactone form, which is then 

hydrolyzed spontaneously or enzymatically into aldonic acid. It can be phosphorylated into 

gluconic acid which can be metabolized by pentose phosphate biochemical pathway. If 

substrates are oxidized at C4, 4-ketoaldose is generated if the same general mechanism as for 

the C1 oxidation is proposed, but oxidation at the non-reducing end is more difficult to 
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analyse (Beeson et al., 2011) (Figure 9). Mass spectrometry was done, and both oxidation at 

C4 and C6 has been suggested. NcLPMO9D was used generating products for which it has 

been shown that oxidation at C4 is happening rather than at C6. That was demonstrated by 

Isaksen et al., 2014. It can be concluded that cellulose cleavage at position 1 or 4 is 

energetically favored since it occurs through a simple elimination reaction, while oxygen 

insertion at other sites would require the cooperation of additional amino acids for glycosidic 

bond cleavage (Dimarogona et al., 2012). 

 

Figure 9. Oxidized reaction products generated from AA9 applied on cellulosic substrates 

(Hemsworth et al., 2012). 

Today, it is widely accepted that a microbial oxidoreductive cellulose degrading 

system exists in parallel with the long-known hydrolytic cellulase system (Dimarogona et al., 

2012). It was shown that LPMOs cleave glycosidic bonds, contain a copper in the active site 

and need reducing agent for initiation of their activity. LPMOs accept electrons from many 

different sources such as X-ray beam used for crystallography and light-excited pigments. 

Reducing agents can also be naturally occurring in the substrate (gallic acid, lignin), added 

externally (ascorbic acid, glutathione), in the form of phenolic compounds, but can also be an 
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enzyme, such as cellobiose dehydrogenase (CDH). CDHs are often encoded by wood 

degrading fungi and act as an electron donor to AA9. It is even discovered that CDH is also 

able to activate Neurospora crassa AA13 to attack starch (Hemsworth et al., 2015). It consists 

of two domains (N-terminal heme domain which carries a cytochrome b type heme and C-

terminal flavin domain which contains FAD, connected via flexible linker) and catalyzes the 

two-electron oxidation of cellobiose (the product of cellobiohydrolases) to cellobionolactone, 

while also generating hydrogen peroxide. Oxidation of cellobiose occurs in the flavin domain 

with subsequent electron transfer to the heme domain (Johansen et al., 2016; Philips et al., 

2011). The CDH/LPMO system was shown to improve the degradation of cellulose in 

combination with cellulases (Kittl et al., 2012). During CDH reaction, the Cu(II) center must 

be reduced into Cu(I) before activating O2. It is suggested that FADH2 is re-oxidised to FAD, 

electrons are shuttled from CDH via its cytochrome domain to AA9, presumably reducing 

Cu(II) to Cu(I), that makes LPMO active. In the proposed mechanism, CDH is interacting 

with a patch on the side of AA9 and electrons are passed via its cytochrome domain along 

wires of hydrophilic side chain within the core of the LPMO leading to the copper active side 

(Hemsworth et al., 2015). After that, oxygen activation, hydrogen-atom abstraction (HAA) 

and oxygen insertion, on the substrate carbon occurs. There are two possible scenarios, in one 

HAA and oxygen insertion are happening before the second reduction and in this case direct 

ET (electron transfer) requires binding of LPMO and substrate and dissociation in between 

the two reductions. Second scenario is that second reduction happens before HAA, however, 

in this case direct ET would still require the LPMO traveling back and forth between substrate 

and redox partner CDH. For bacterial LPMOs ET pathways have not been clear yet because 

bacteria do not contain CDH and therefore completely depend on other electron donors, like 

reductants. All in all, the LPMO domain looks perfect for LPMO catalysis; it contains the 

core with conserved ET-competent residues, the loops for substrate binding. It is presumed 

that components closer to the active site help in binding oxygen and directing electrons and 

protons to the reactive intermediate (Span and Marletta, 2015). The concerted activity of 

LPMOs and CDHs in oxidative cleavage of cellulose should not be overestimated, because 

not all organisms have genes encoding for both enzymes in their genomes. (Dimarogona et 

al., 2012). In addition to CDH, single-domain flavoenzymes such as glucose dehydrogenase 

and aryl-alcohol quinone oxidoreductases can also play an important role of electron donors 

for LPMOs (Johansen, 2016).  
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2.6.1. H2O2 as a co-substrate  

H2O2 represents a potentially efficient way to supply the protons, electrons and oxygen 

that are needed for the ‘monooxygenase’ reaction and is naturally present in ecological niches 

where plant biomass decomposition occurs and LPMOs are present (Bissaro et al., 2017). By 

using enzyme assays, mass spectrometry and experiments with labeled oxygen atoms, it is 

shown that H2O2, and not O2 as previously thought, is the co-substrate of LPMOs. A catalytic 

mechanism in which an H2O2-derived oxygen atom, rather than one derived from O2, would 

be introduced into the polysaccharide chain is suggested. In that mechanism, first occurs 

priming reduction of the Cu(II) to Cu(I) in the catalytic center of the enzyme. H2O2 is then 

binding to the Cu(I) and homolytic bond cleavage would produce a hydroxyl radical. It is 

thought that this leads to Cu(II)-hydroxide intermediate formation and a substrate radical. 

Eventually, the reaction between copper-hydroxyl intermediate and the substrate radical leads 

to substrate hydroxylation and regeneration of the Cu(I) center which is then able to perform a 

new catalytic cycle (Bissaro et al., 2016). Addition of exogenous H2O2 alone did not lead to 

cellulose oxidation, however, had a positive effect on LPMO activity when a reductant was 

also added. Furthermore, high concentrations of H2O2 inactivate the enzyme. If H2O2 is added 

responsibly, an initial increase in LPMO activity is revealed at lower H2O2 concentrations and 

progressively rapid enzyme inactivation with increasing H2O2 concentration. It is also proven 

that oxidases can induce LPMO activity if a reductant is available. In this matter, abundant 

phenols derived from plants and fungi have recently been implicated in the reductive 

activation of LPMOs (Bissaro et al., 2017). 

 

2.6.2. 2,6-dimethoxyphenol (DMP) 

Polyphenols are largely present in plant in the form of monomers or polymers 

structures. They are limited for use because of their lower solubility and stability. 2,6-

dimethoxyphenol is a monophenolic compound that is used for the measurement of laccase 

(EC 1.10.3.2) and peroxidase (EC 1.11.1.7) activity. Laccases are multi-copper-containing 

enzymes, which reduce molecular oxygen to water and simultaneously perform one-electron 

oxidation of various substrates such as diphenols, methoxy-substituted monophenols, etc. 

(Adelakun et al., 2012).  Peroxidases are heme proteins with histidine as ligand. The iron in 

the resting enzyme is Fe(III). They use two phenolic electron donors to reduce H2O2 into two 
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water molecules (CAZy.org, 2017). The mechanism for the oxidation of DMP catalyzed by 

laccases and peroxidases was suggested and it is shown in Figure 10. Two DMP molecules 

are oxidized at the hydroxyl group, two electrons are transferred to the electron acceptor 

(manganese, iron, copper) and further reduction of hydrogen peroxide to two water molecules 

occurs. The two DMP phenoxy radicals spontaneously dimerise to hydrocoerulignone, which 

is again an electron donor. One hydrocoerulignone is oxidized to one coerulignone under 

reducing hydrogen peroxide to water. Coerulignone (oxidized DMP quinone dimer) shows a 

strong absorptivity at 469 nm. In the reaction two DMP molecules are oxidized under 

reduction of two H2O2 molecules with a stoichiometry of 2:1 for DMP:H2O2. (Wariishi et al., 

1992). 

 

 

Figure 10. Proposed mechanism for oxidation of 2,6-dimethoxyphenol catalyzed by  

manganese peroxidase (Wariishi et al., 1992). 
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Since we know that H2O2 is a co-substrate for LPMO, all phenolic compounds 

reacting less with LPMO and not showing activity in a spectrophotometric assay, should be 

re-tested if the reactivity in the presence of H2O2 instead of only O2 is increased. The 

advantage of chromogenic compounds like DMP, which is already well studied, to measure 

the activity of LPMO in such a spectrophotometric assay is big.  

In this graduate thesis we show that DMP reacts with LPMO and H2O2 as a co-

substrate and that it is suitable to develop a fast and sensitive spectrophotometric assay to 

easily detect activity for characterization of LPMOs. 
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3. MATERIALS & METHODS 

3.1. ENZYME 

The enzyme that was used in the experiments is lytic polyssacharide monooxygenase 

(LPMO - 02916) isolated from fungi Neurospora crassa.  

3.2. CHEMICALS 

Chemicals that were used for all assays are listed in the Table below. All chemicals 

used were of analytical grade or highest purity available. 

Table 1. Chemicals used in assays and their sources. 

Assay Chemical Source 

Substrate screening Sinapic acid 

Pyrochatechol 

Gallic acid 

2,6-dimethoxyphenol 

Sigma Aldrich (St. Louis, 

USA) 

 

Basic assays EDTA 

Copper(II) sulfate 

Copper(II) chloride 

Sigma Aldrich (St. Louis, 

USA) 

 

pH profile 1. Anionic buffers: 

 

Acetic acid 

Malic acid 

 

Phosphoric acid 

 

Dimethylarsinic acid 

Succinic acid 

Citric acid 

 

 

 

Fluka (St. Gallen, CH) 

 

 

Roth (Karlsruhe, Germany) 

 

Sigma Aldrich (St. Louis, 

USA) 

 

 

2. Kationic buffers: 

 

Pyridine 

Imidazol 

2,4-dimethylimidazol 

Histidine 

 

 

Sigma Aldrich (St. Louis, 

USA) 

 

 

In all experiments two substrates were used: 2,6-dimethoxyphenol (DMP) as a 

chromogenic substrate and hydrogen peroxide (H2O2) as co-substrate, both from Sigma 

Aldrich (St. Louis, USA). 
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All aqueous solutions were prepared using reverse osmotic water (RO-H2O) or water 

purified and deionized (di-H2O, 17 MΩ cm) with a HQ water system (Ultra Clear basic UV, 

SG, Siemens, Berlin/Munich, Germany). 

3.3. SUBSTRATE SCREENING 

In order to determine the most suitable chromogenic substrate for all characterization 

assays, the substrates sinapic acid, pyrochatechol, gallic acid and DMP were screened. 

The screening was done at room temperature (~23°C). UV/Vis spectra were recorded 

with an Agilent 8453 UV–visible spectrophotometer equipped with a photodiode array 

detector (Figure 11). Concentrations of LPMO, hydrogen peroxide and substrates were 2 μM, 

100 μM and 0.2 mM, respectively. A 100 mM pH 6.0 buffer combining succinic acid and 

phosphoric acid to cover a broader stable pH range (pH 4.5–pH 8.0) was used. As a control 

experiment all assays were performed without adding H2O2 (water was added to reach the 

same volume). 

 

Figure 11. Agilent 8453 UV–visible spectrophotometer. 
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3.4. CHARACTERIZATION - VOLUMETRIC AND SPECIFIC ACTIVITY 

LPMO activity was measured at 30°C by monitoring the oxidation of 1 mM 2,6-

dimethoxyphenol (DMP) in 100 mM succinic-phosphoric buffer at pH 7.5. The absorption 

maximum of oxidised DMP which forms coerulignone (the chromogenic endproduct) is at 

469 nm and the corresponding extinction coefficient is ε469 = 49.6 mM-1cm-1 (Wariishi et al., 

1992). Cuvettes with a volume of 1 mL and 1 cm path length (d) were used to measure the 

kinetic slope over time, to further calculate the volumetric activity in units per milliliter. The 

enzyme activity is usually defined as amount of substrate converted to product per time unit. 

According to the SI system, concentration of product must be in mol and time in seconds. The 

enzyme unit 1 katal is defined as the amount of enzyme converting 1 mol substrate forming 1 

mol product in one second. However, besides katal, international unit is more often used 

(Bisswanger, 2014). One unit of enzymatic activity is defined as the amount of enzyme to 

produce one micromole chromogenic product per minute (1U = 1 μmolmin-1). The enzyme 

factor was calculated by dividing the extincion coefficient with a factor of 2 (ε469 = 24.8 mM-1 

cm-1), considering coerulignone is a dimer. The calculation was done by multiplying the 

kinetic slope with the enzyme factor and the dilution of enzyme. 

Enzyme factor was calculated with following formula: 

EF [s-1]= 
total volume [mL]  *60

enzyme volume [mL] * d [cm] * ε [mM-1cm-1]
=60.5 s-1 for DMP [2] 

 

After the volumetric activity, specific activity was also calculated by dividing 

volumetric activity with concentration of the NcLPMO_02916 which is 51.75 mgmL-1. 

 

3.4.1. Standard LPMO activity assay 

860 μL succinic-phosphoric buffer, pH 7.5, concentration 116 mM, 20 μL LPMO, 

concentration 25 μM, 20 μL H2O2, concentration 5 mM and 100 μL DMP, concentration 10 

mM were added in cuvette to get the final concentrations of buffer 100 mM, LPMO 0.5 μM, 

H2O2 100μM and DMP 1mM. Everything was mixed and measurement lasted for 300 s.   
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3.4.2. Control experiments 

Different assays were performed in the same way as in the standard assay, apart from 

adding 100 μL of water instead of the DMP (effect of no substrate), 20 μL of water instead of 

H2O2 (effect of no co-substrate) and 20 μL of buffer for enzyme dilution (10 mM succinic-

phosphoric buffer) instead of LPMO (effect of no enzyme). 

 

3.4.3. CuSO4 and CuCl2 instead of LPMO  

Different standard assays were performed by exchanging the enzyme (LPMO) either 

with copper(II)sulfate (CuSO4) or copper(II)chloride (CuCl2) with tree different 

concentrations of copper (0.5 μM, 5μM  and 50 μM). To see the effect of the co-substrate, the 

standard assay with CuSO4 instead of LPMO was also performed without H2O2.  

860 μL succinic-phosphoric buffer, pH 7.5, concentration 116 mM and 100 μL DMP, 

concentration 10 mM were added in every assay. Final concentrations in cuvettes were: buffer 

100 mM and DMP 1mM. Everything was mixed and measurement lasted for 300 s.  

 

3.4.4. Stability assays 

In order to define stability of the LPMO, assays with ethylenediaminetetraacetic acid 

(EDTA) and heat inactivated LPMO were done. The absorbance was measured for 300 s at 

the Diode array. 

 For the heat test four solutions were made in eppendorf tubes by adding 1075 μL of 

succinic-phosphoric buffer, pH 7.5, concentration 100 mM and 25 μL LPMO, concentration 

0.5 μM. Eppendorf tubes were vortexed and then transferred into a heating block at 100°C for 

30 minutes, 60 minutes, 2 hours and 4 hours. After the incubation, eppendorf tubes were put 

on ice and 880 μL of each enzyme solution were transferred into a cuvette. Reaction was 

started by adding 20 μL of H2O2, concentration 50μM and 100 μL of DMP, concentration 1 

mM. 

There were two different concentrations of EDTA included in the stability test: 1 mM 

and 2 mM. EDTA solution was prepared with original stock of EDTA disolved in 10 mM 

succinic-phosphoric buffer at pH 6.0. LPMO (final concentration 0.5 µM) was added and 

incubated for 30 minutes. 860 μL of succinic-phosphoric buffer at pH 7.5, concentration 116 
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mM (final concentration 100 mM); 20 μL 5 mM H2O2 (final concentration 100μM) and 100 

μL 10 mM DMP (final concentration 1 mM) were added in the cuvette which was completed 

by adding 20 μL of EDTA and LPMO solution. 

3.4.5. pH profile 

Two types of pH-profiles were done, with anionic and kationic buffer species. Anionic 

buffers were prepared from acetic acid, succinic acid, malic acid, citric acid, dimethylarsinic 

acid and phosphoric acid and assays were done in a pH range from 3.5 to 8.5. Kationic buffers 

were prepared from pyridine, imidazol, 2,4-dimethylimidazol and histidine in a pH range 

from 4.0 to 9.5. All buffers were prepared by diluting mentioned compounds in highly pure 

water. 

The relationship between pH and the buffer components is described by Henderson-

Hasselbach equation: 

pH = pKa - log 
[HAc]

[Ac-]
 [3] 

 

pH = - log [H+]; negative logarithm of the proton concentration 

pKa = - log Ka; negative logarithm of Ka, the dissociation constant of buffer components 

HAc = acid in the non-dissociated form 

Ac-= acid in the dissociated form 

 

The pKa value is very important since that value indicates pH at which buffer is half 

dissociated and shows the highest buffer capacity. The capacity range of buffer is narrow and 

includes two pH units at best (Bisswanger, 2014). For that reason, before deciding which 

buffer species should be used, pKa values of kationic and anionic buffer compounds have to 

be checked in order to decide which pH range can be covered. When analyzing the pH 

dependence of an enzyme, a broader pH range is required, so several buffer systems may be 

combined (Bisswanger, 2014). This is the reason of using numerous buffers in the pH profile 

assays. 

In measuring cuvettes 100 mM buffer, 25 mM DMP and 100 μM H2O2 were mixed to 

a total volume of 980 μL. 20 μL LPMO was added in the end to start the reaction. For all 

buffers different concentrations of the enzyme were used to reach a reliable activity. The 

change in absorbance over time was recorded with a UV/Vis photometer (Lambda 35, Perkin 
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Elmer, USA) (Figure 12) and measurement lasted for up to 30 seconds. Measurements were 

done in single cuvettes to use initial rates (2-5 sec) for slope calculation.  

 

 

Figure 12. Spectrophotometer Lambda 35 with water bath. 

After measuring kationic and anionic buffers, we chose the most suitable combined 

buffer system in a broad pH range. The anionic buffer system was succinic acid-phosphoric 

acid buffer. Two solutions were prepared, succinic acid and sodium hydrogen phosphate 

(NaH2PO4) were separately dissolved in highly pure water, each of them 50 mM to reach an 

100 mM end concentration of buffering species. Same procedure was done in order to prepare 

pyridine-imidazol buffer for the kationic buffer system. In these two measurements the pH 

range was 4.5 to 8.0. Concentration and volume of the buffers and H2O2 in the cuvettes were 

the same as in the assays mentioned above.  

3.4.6. Temperature effect 

The change in absorbance during time was measured with Agilent 8453 UV–visible 

spectrophotometer equipped with a photodiode array detector. Using the standard assay the 

effect/influence of temperature regarding assay stability/enzymatic activity was tested by 

incubating the assay solutions (without enzyme) at different temperatures in a water bath for 

30 minutes. Nine different incubation temperatures were tested and controlled with a 
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thermometer in the cuvettes: room temperature, 25°C, 30°C, 35°C, 40°C, 45°C, 50°C, 55°C 

and 60°C. After incubation, reaction was started by adding 0.5 μM LPMO. 

Apart from calculating volumetric and specific activity, Arrhenius equation to 

calculate the activation energy of the reaction was used: 

ln k= ln A - 
Ea

 R
*

1

T
    [4] 

 

k = rate constant [Ug-1] 

A = pre-exponential factor, a constant for each chemical reaction 

Ea = activation energy for the reaction [kJmol-1] 

R = universal gas constant; 8.314 [Jmol−1K−1] 

T = absolute temperature [K] 

 

The natural logarithm (ln) of the specific activity [Ug-1] was plotted versus the inverse 

temperature (1/T). The slope in the linear range multiplied by the gas constant is equal to the 

activation energy. 

 

3.4.7. Kinetic constants - KM and Vmax values 

KM and Vmax values for both DMP and H2O2 were measured with UV/Vis photometer 

(Lambda 35, Perkin Elmer, USA). Assays for each substrate were made in 100 mM succinic-

phosphoric buffer both at pH 6.0 and pH 7.0.  

In order to determine KM and Vmax values for DMP and H2O2, eight concentrations of 

DMP (0.5 mM, 1 mM, 2 mM, 10 mM, 25 mM, 50 mM, 85 mM and 115 mM) and six 

concentrations of H2O2 (2 μM, 5 μM, 25 μM, 100 μM, 300 μM and 1000 μM) were used.  

LPMO concentration at pH 6 was 1.5 μM, and in the case of pH 7 it was 0.10 μM. 

In addition, kinetic constans for H2O2 were also measured at pH 7.5. In this case eight 

different concentrations of H2O2 could be used: 2 μM, 5 μM, 10 μM, 25 μM, 50 μM, 75 μM, 

100 μM, 500 μM with only two concentrations of DMP: 0.5 mM and 1 mM. In this assay 

LPMO concentration was 0.01 μM. 
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3.4.8. Limit of Detection 

Before carrying out this test, the lowest LPMO concentration which gives a three 

times higher linear slope compared to the noise had to be determined. In order to do this, a 

few different LPMO concentrations were measured using the standard assay. 

After finding out the approximately lowest activity range of the reaction, it was 

decided that the highest concentration is D0 (dilution zero, original stock for the assay) and 

the lowest one is D800 (dilution 1:800). Twelve different concentrations of LPMO were made 

in between to cover the whole range (for example, D80 means 1:80 dilution, D200 1:200 

dilution, etc.). LPMO concentrations are listed in the table below (Table 2). 

 

Table 2. Symbols for the dilutions and their LPMO concentrations. 

DO 10 μM 

D2 5 μM 

D4 2.5 μM 

D8 1.25 μM 

D10 1 μM 

D20 0.5 μM 

D40 0.25 μM 

D80 0.125 μM 

D100 0.1 μM 

D200 0.05 μM 

D400 0.025 μM 

D800 0.0125 μM 

 

For this assay, two dilution series were carried out containing twelve dilutions. D10 

and D100 were made directly from D0 using at least 10 μL of it. D2, D4 and D8 were made 

from D0; D20, D40 and D80 were made from D10 and D200, D400 and D800 were made 

from D100 in order to avoid as much mistakes as possible. The dilutions of LPMO were made 

in 10 mM succinic-phosphoric buffer at pH 6.0. Everything was vortexed before the assay 

was started. A randomized measuring scheme for all dilutions was made in an excel file 

(Table 3). The numbers from 1 to 6 are showing which 8 dilutions are used in which 

measurement because 8 cuvettes were measured at once.  
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Table 3. Measuring scheme for determination of LoD. 

Dilution 1 Dilution 2 

 
D800 D20 D100 D8 1 

D200 D200 D200 D2 
 

D2 D800 D80 D200 2 

D8 D10 D20 D0 
 

D100 D0 D800 D100 3 

D0 D100 D10 D800 
 

D400 D40 D8 D40 4 

D10 D400 D400 D20 
 

D40 D8 D2 D400 5 

D20 D2 D4 D4 
 

D80 D80 D40 D80 6 

D4 D4 D0 D10 
  

All 48 cuvettes were incubated at 30°C for 10 minutes. For every measurement 8 

cuvettes were used and LPMO dilutions were added according to the scheme in Table 3. 
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4. RESULTS & DISCUSSION 

4.1. SUBSTRATE SCREENING 

Results of substrate screening are shown below from Figure 13-16. All experiments 

were done spectrophotometricaly and with and without hydrogen peroxide. 

 

 

 

Figure 13. Spectra of sinapic acid together with its chemical structure over time; red line 

shows initial spectra and blue line shows spectra after 5000 s. A) Assay done with 

buffer, sinapic acid, LPMO and H2O2, B) Assay done with buffer, sinapic acid, 

LPMO and without H2O2. 

 

A B 
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Figure 14. Spectra of pyrocatechol together with its chemical structure over time; red line 

shows initial spectra and blue line shows spectra after 2500 s. A) Assay done with 

buffer, pyrocatechol, LPMO and H2O2, B) Assay done with buffer, pyrocatechol, 

LPMO and without H2O2. 

 

 

Figure 15. Spectra of gallic acid together with its chemical structure over time; red line shows 

initial spectra and blue line shows spectra after 2500 s. A) Assay done with buffer, 

gallic acid, LPMO and H2O2, B) Assay done with buffer, gallic acid, LPMO and 

without H2O2. 
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Figure 16. Spectra of DMP together with its chemical structure over time; red line shows 

initial spectra and blue line shows spectra after 5000 s. A) Assay done with buffer, 

DMP, LPMO and H2O2, B) Assay done with buffer, DMP, LPMO and without 

H2O2. 

Two things are similar for all tested substrates. First, we see a peak in the ultraviolet 

range, which results from the double bonds in the aromatic ring and is typical for phenolic 

compounds. In the measurements with H2O2, during reaction (oxidation) an increase and 

decrease in absorbance can be observed. The decreasing absorbance at the initial peak 

maxima and the occurring peak or peak shift shows the oxidation of substrate and the 

accumulation of the oxidation product. This could be either a stable phenoxy radical, a 

dimerized or polymerized product.  

Sinapic acid shows a shift in absorption around 360 nm, pyrocatechol 390 nm, gallic 

acid around 325 nm and a peak at 370 nm, pyrocatechol shows a peak at 390 nm and DMP at 

469 nm. It is also visible that DMP is showing the highest peak.  

Secondly, without using H2O2 in the reaction, we do not see any change in the 

spectra’s after the same time. This is an indication that H2O2 plays an important role for 

LPMO activity and might be its co-substrate rather than O2. It is obvious that the reaction with 

DMP and H2O2 is showing the highest change in absorbance compared to the reaction without 

H2O2. The calculated rate (absorbance increase over time) is 63 times higher in the case of 

using H2O2. Furthermore, the DMP peak occurs in the visible range, which makes it very 
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useful as a substrate for enzymatic activity assays. Due to these facts we decided to use DMP 

as chromogenic substrate to develop an activity assay for LPMOs. 

 

4.2. BASIC LPMO ASSAYS 

4.2.1. Negative assays for LPMO 

It should be proven that DMP and H2O2 are both important for LPMO activity and 

that, on the other hand, nothing will happen if these two compounds are added into the cuvette 

without LPMO. Results are shown in Figure 17. 

 

Figure 17. Comparison of specific activities of LPMO using standard assay and assays 

without: DMP, H2O2 and LPMO. 

The activity of LPMO in an assay with buffer, DMP, H2O2 and enzyme itself amounts 

38.95 ± 1.89 Ug-1. Activity in the assay without DMP is 0.72 ± 0.91, without H2O2 1.20 ± 

1.20 and without LPMO it is 0.58 ± 0.15 Ug-1. Comparing assays without DMP and H2O2  

with the standard assay, the activity is ~30 times lower, which proves that the substrate and 

the co-substrate are very important for its activity. 
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4.2.2. Copper compounds instead of LPMO 

As mentioned above, LPMO contains a single copper ion coordinated by the histidine 

brace in its active side. Using copper compounds instead of LPMO should rule out the 

possibility that in all those assays LPMO was not the main compound responsible for 

absorbance shown in spectrophotometric measurements. 

Table 4. Results of spectrophotometric measurements of LPMO and copper containing 

compounds. 

 
Ug-1 

STANDARD (0.5  µM LPMO) 38.95 ± 1.89 

CuSO4 0.5µM with H2O2 1.20 ± 0.83 

CuSO4 5µM with H2O2 2.94 ± 0.43 

CuSO4 50µM with H2O2 16.03 ± 0.56 

CuSO4 0.5µM without H2O2 1.47 ± 0.82 

CuSO4 5µM without H2O2 2.09 ± 0.89 

CuSO4 50 µM without H2O2 5.11 ± 0.77 

CuCl2 0.5µM 1.11 ± 0.15 

CuCl2 5µM 3.23 ± 0.36 

CuCl2 50µM 15.81 ± 0.98 

 

Results represented in Table 4 shows that the highest activity (38.95 ± 1.89 Ug-1) of 

LPMO is in the standard assay, which contains 0.5 μM LPMO. Comparing to the same 

concentrations of copper compounds put in the assay instead of LPMO, 0.5 μM CuSO4 shows 

activity of 1.20 ± 0.83 Ug-1 and 0.5µM CuCl2 1.11 ± 0.15 Ug-1. That is the proof that LPMO 

is responsible for the reaction that takes action in the cuvette. If the concentrations of these 

compounds are ten or one hundred times higher (5 and 50 μM), specific activity is 

proportionally increasing. That is a very important observation when working with LPMO; it 

is necessary to consider concentrations of copper compounds, if the solution which has to be 

analyzed contains them. Experiments without hydrogen peroxide were also done and results 

show that it is not a big difference in activity with and without it if concentrations of 

copper(II)sulfate are small. When CuSO4 concentration is 50 μM, its activity without 

peroxide is ~3 times lower than with it (16.03 ± 0.56 to 5.11 ± 0.77 Ug-1). This is a hint to 

H2O2 acting in reactions with copper ions. 
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4.2.3. Stability assays  

 

 

Figure 18. Comparison of specific activities of LPMO in standard assay and assays with 

LPMO incubating with different EDTA concentrations and LPMO exposure to 

high temperature during different time intervals. 

 

Results in diagram above show that already 1 mM EDTA is high enough to inactivate 

LPMO. The activity decreased from 38.95 ± 1.89 Ug-1 to 0.24 ± 0.54 Ug-1. Since EDTA is 

used for scavenging metal ions which deactivate metal-dependent enzymes, these results are 

expected because of the copper ion in the active side of LPMOs. From the results of the heat 

test it is visible that LPMO is affected by high temperatures. The longer it is exposed to 

~100°C, activity is less. After 30 minutes, LPMOs activity is decreased ~5 times (from 38.95 

± 1.89 Ug-1 to 8.22 ± 0.67 Ug-1) and after 240 minutes (4 hours) activity is about 57 times 

lower (38.95 ± 1.89 Ug-1 to 0.68 ± 1.53 Ug-1). Furthermore we have to note that the LPMO 

solution (1 mL, stored on ice) was incubated in an eppendorf tube in a heat block and that it 

took time to heat the sample up. 
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4.3. pH PROFILE 

4.3.1. Anionic buffers 

 

 

Figure 19. Specific activity of LPMO depending on the different anionic buffers (and their 

chemical structures)  at different pH values. 
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From the results shown in Figure 19, it is clear that LPMO activity is increasing 

together with the increase of pH. Acetic acid, succinic acid, malic acid and citric acid buffers 

have similiar slopes, however, the overall activity is decreasing. According to the chemical 

structures of these acids, it can be concluded that LPMO activity is higher in buffers with less 

carboxylic groups and hydroxylic groups. Dimethylarsinic acid and phosphoric acid buffers 

are, according to the graph, the best anionic buffers for LPMO assays. Its activity can be 

detected in the pH range from 5.0 to 8.19 and it is 1284.5 ± 111.7 Ug-1 for phosphoric acid 

and 1266.4 ± 40.4 Ug-1 for dimethylarsinic acid. Comparing to the buffers mentioned above, 

the highest LPMO activity was measured in malic acid buffer at pH 6.77 and it is 146.6 ± 5.0  

Ug-1 which is ~8.8 and ~ 8.6 times lower than phosphoric acid buffer and dimethylarsinic acid 

buffer, respectively. For dimethylarsinic acid and phosphoric acid, a similar effect as for the 

other buffers regarding increasing activity with less hydroxyl groups can be observed.  
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4.3.2. Kationic buffers 

 

Figure 20. Specific activity of LPMO depending on the different kationic buffers (and their 

chemical structures)  at different pH values. 

As it is visible from the results in Figure 20, histidine is bad buffer for LPMO activity 

assays, because the activity drops to more or less zero with neutral pH. When using 2,4-

dimethylimidazol buffer, activity is decreasing with the higher pH values (from ~7-8), then it 

becomes constant (at pH 7.92 LPMO activity is 468.6 ± 35.0 Ug-1, at pH 8.31 it is 473.5 ± 

29.8 Ug-1, at pH 8.71 it is 479.8 ± 40.3 Ug-1 and at pH 9.05 it amounts 484.4 ± 98.4 Ug-1) and 

after pH ~9.0 it starts decreasing again. No further experiments were done in order to explain 

these results. In the case of histidine, presumption is that these results can be somehow related 
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to „histidine brace“ in the active site of LPMO and that the buffer species is strongly binding 

in the more deprotonated state.  

Pyridine and imidazol buffers are convenient for doing LPMO assays, each of them in 

different pH range, which is shown through increase of activity by increasing the pH values. 

LPMO shows linear increasing in activity in Pyridine buffer from pH 4.06 to 6.39 at which it 

is the highest and amounts 353.1 ± 23.1 Ug-1. Since imidazol has higher pKa value (7.05) than 

pyridine (5.24), it was possible to conduct the experiments at higher pH values. In Imidazol 

buffer, activity is also rising from pH 5.91 to 8.31 but it becomes linear around pH 7. The 

highest activity is at the highest pH and it amounts 1956.5 ± 84.9 Ug-1. 

 

4.3.3. Buffer combinations 

From the results presented and explained in Figure 19 and Figure 20, the best 

combination of buffer species can be created using succinic acid and phosphoric acid, because 

it is clearly shown in Figure 19 that enzyme activity in phosphoric acid buffer actually 

continues to activity in succinic acid buffer which was measured at lower pH values because 

of the lower pKa value (7.21 compared to 5.24). The same situation can be observed in the 

case of kationic buffers with pyridine and imidazol shown in Figure 20. LPMO activity in 

imidazol buffer continues to pyridine buffer where it was measured at lower pH because of 

the same reason already mentioned above (pKa values). Because of these results, succinic-

phosphoric buffer and pyridine-imidazol buffer were made and specific activity was 

measured. Results are shown in the graph below. 
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Figure 21. Results from measuring activity in succinic-phosphoric buffer and pyridine-

imidazol buffer and in their individual compounds. 

LPMO activity is very similar in both combinations. There are very small differences, 

which are caused by measuring errors or preparation, however, it is clearly seen in the Figure 

21 that both succinic-phosphoric buffer and pyridine-imidazol buffer are very convenient and 

should be used in LPMO activity assays, especially because they encompass a very large 

range of pH values, from 4.72 to 7.88 and 4.63 to 7.91, respectively. 
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4.4. TEMPERATURE EFFECT ON LPMO 

Proteins can be denaturated by heat, as it was proven for LPMO in Figure 18. If the 

temperature is increasing slowly, protein conformation remains intact until it quickly loses its 

structure and function in the narrow temperature range (Nelson and Cox, 2012). 

 

Figure 22. Correlation between absorption rates during time for LPMO incubated at different 

temperatures. 

Since absorption is proportional to enzyme activity, it is obvious that LPMO activity is 

lost faster at higher temperature. In Figure 22 it is shown that in a temperature range from 

room temperature to around 35°C the slope is linear, which means activity is not lost during 

300 s. Around 40°C, after ~200 s there is no slope anymore, just a straight line, and in a range 

from 45°C to, in this case, 60°C, slope reaches negative values. The plateau and following 

decrease in absorption can be explained by totally inactivated LPMO. We guess that 

inactivation at lower temperature occurs from the reaction mechanism with H2O2 rather than 

from the temperature, because at this low temperatures (e.g. 40°C) the enzyme should be 

stable. At higher temperatures (e.g. 60°C) we hypothesize that both, a mixture of heat 

inactivation and inactivation due to H2O2, are the reasons for the early end of activity. 

Nevertheless, the activation energy of the enzyme reaction was calculated through Arrhenius 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250 300

A

time [s]

room temperature

25 °C

30 °C

35 °C

40 °C

45 °C

50 °C

55 °C

60 °C



43 
 

equation (k = A * e (-Ea/RT) from the linear range. Expressed in natural logarithmic form (ln k 

= ln A - (Ea/R*1/T)), the Arrhenius equation allows calculation of Ea (activation energy) by 

plotting ln (natural logarithm) of the initial rate of the reaction on y axis vs. 1/T (temperature 

in Kelvin) on x axis. The slope is equal to -Ea*R. 

 

Figure 23. Results in calculation of trendline by plotting logarithmic values of the initial rate 

of reactions versus reciprocal value of temperature in Kelvin. 

From the calculated slope, linear regression; y = - 7086.8x + 26.836, Ea was calculated 

(Figure 23). Since -7086.8 correspond to -Ea*R and R is a gas constant which amounts 8,314 

Jmol-1K-1, Ea was calculated by multiplying -7086.8 with 8.314 and -1 to get the positive Ea 

value. Result is 58.92 kJmol-1. This is the amount of energy that is required to overcome the 

activation barrier which represents the transition state that must be overcome in the 

conversion of reactants into products (Nelson and Cox, 2012). 
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4.5. LPMO KINETICS 

4.5.1. KM and Vmax values measured for H2O2  

Table 5. Vmax and KM values of LPMO for H2O2 calculated for different DMP concentrations 

measured in succinic-phosphoric buffer at pH 6.0. 

DMP [mM] Vmax [Ug-1] KM [µM] 

0.5 2.00 ± 0.08 5.89  ± 1.36 

1 3.99  ± 0.23 8.80  ± 2.70 

2 9.21  ± 0.46 20.10  ± 5.03 

10 32.62 ± 0.72 23.32  ± 2.49 

25 58.73  ± 1.37 24.11  ± 2.72 

50 104.66  ± 3.61 24.63  ± 4.11 

85 126.52 ± 6.43 16.99  ± 4.40 

115 153.95  ± 7.63 6.29  ± 1.71 

 

Table 6. Vmax and KM values of LPMO for H2O2 calculated for different DMP concentrations 

measured in succinic-phosphoric buffer at pH 7.0. 

DMP 

[mM] 
Vmax [Ug-1] KM [µM] 

0.5 17.38 ± 0.59 2.18 ± 0.47 

1 28.75 ± 0.61 2.20 ± 0.29 

2 45.64 ± 0.94 2.30 ± 0.30 

10 151.52 ± 5.59 1.95 ± 0.47 

25 257.09 ± 7.34 1.90 ± 0.36 

50 543.07 ± 19.01 1.08 ± 0.31 

85 809.35 ± 27.37 0.40 ± 0.20 

115 865.52 ± 24.71 0.38 ± 0.17 
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Results shown in Table 5 and 6 again prove that LPMO is more active at higher pH 

values. At pH 6.0, LPMO reaches 2.00 ± 0.08 Ug-1 and at pH 7.0 it reaches 17.38 ± 0.59 Ug-1, 

measured with the same DMP concentration (0.5 mM). That is ~9 times higher maximum 

velocity. When observing the highest DMP concentration used (115 mM), Vmax is also 

different for pH 6.0 (153.95 ± 7.63 Ug-1) than for pH 7 (865.52 ± 24.71 Ug-1), leading to the 

increase of ~7 times. However, when DMP concentration used in assay is increasing, Vmax are 

also raising in both pH 6.0 and pH 7.0 measurements. Calculations of KM are showing 

different results. As it is expected, KM values are lower at pH 7.0. In comparison, KM value 

measured while using 0.5 mM DMP amounts 5.89 ± 1.36 µM at pH 6.0 and  2.18 ± 0.47 µM 

at pH 7.0, which is ~3 times lower at higher pH. The thing that is not expected is that with 

higher DMP concentrations after 50 mM (at pH 6.0) KM values are decreasing. It started 

between 25 mM DMP and 50 mM DMP where KM values are very similar (24.11 ± 2.72 µM  

and 24.63 ± 4.11 µM, respectively). After 50 mM they are much lower, reaching 6.29 ± 1.71 

µM at 115 mM, the value similar to 0.5 mM DMP (5.89 ± 1.36 µM). The decreasing KM 

values with high DMP concentrations can be explained due to problems with solubility of the 

substrate and in general problems with the reaction mechanism caused by the high 

concentration. 
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Figure 24. Michaelis-Menten curve for H2O2 as a co-substrate for LPMO with 10 mM DMP in 

the succinic-phosphoric buffer at: A) pH 6.0 and B) pH 7.0. 

Michaelis-Menten curves for all DMP concentrations are made and results of KM and 

Vmax values are shown in Table 5 and 6. There are two representative curves shown in Figure 

24 where the difference in range of LPMO activity between pH 6.0 and pH 7.0 is clearly 

visible. Both curves are hyperbolas, which lead to conclusion that H2O2 is good co-substrate 

for LPMO. 
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4.5.2. KM and Vmax values measured for DMP 

Table 7. Vmax and KM values of LPMO for DMP calculated for different H2O2 concentrations 

measured in succinic-phosphoric buffer at pH 6.0. 

H202 [µM] Vmax [Ug-1] KM [mM] 

2 n.c. n.c. 

5 n.c. n.c. 

25 276.83 ± 4.46 245.44 ± 74.71 

100 223.77 ± 16.06 96.82 ± 12.56 

300 352.79 ± 43.58 144.75 ± 28.16 

1000 314.11 ± 13.73 97.66 ± 7.69 

n.c. … not calculated because Michaelis plot showed linear increase in activity 

 

 

 

Table 8. Vmax and KM values of LPMO for DMP calculated for different H2O2 concentrations 

measured in succinic-phosphoric buffer at pH 7.0. 

H202 [µM] Vmax [Ug-1] Km [mM] 

2 3884.29 ± 1844.12 420.78 ± 243.08 

5 2269.89 ± 553.11 249.79 ± 82.35 

25 2124.74 ± 405.97 171.91 ± 49.09 

100 1921.55  ± 289.39 131.79 ± 32.22 

300 1923.92 ± 293.28 123.96 ± 31.31 

1000 2165.94 ± 229.50 140.47 ± 23.67 
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In the experiments where H2O2 was kept constant and DMP concentrations were 

different (Table 7 and 8), the same thing occurred as in the experiments explained in 4.5.1. 

Vmax values are higher at higher pH (pH 7.0), when comparing the same H2O2 concentrations 

(for example, Vmax is ~8.5 times higher at pH 7.0 for 100 μM H2O2). The same thing does not 

occur for KM (values are not lower at higher pH as in previous case). For 100 μM H2O2, KM at 

pH 6.0 is lower (96.82 ± 12.56 mM) than at pH 7.0 (131.79 ± 32.22 mM). Interestingly, at pH 

6.0, when using 2 and 5 μM hydrogen peroxide, values could not be calculated because trends 

are linear (Figure 25), so there is no Michaelis-Menten hyperbolic curve. For the same 

concentrations at pH 7.0, Vmax and KM values are calculated because trend is not as linear as 

at pH 6.0 (Figure 26), but values are very high and predicted and standard deviations are 

really big. Vmax and KM values for 2 μM H2O2 are 3884.29 ± 1844.12 Ug-1 and 420.78 ± 

243.08 mM, respectively and for 5 μM H2O2 maximal activity amounts 2269.89 ± 553.11 Ug-1 

and KM is 249.79 ± 82.35 mM. These values of DMP can not be reached in LPMO activity 

assays because its solubility is much lower. It is also unexpected that there is no increasing of 

Vmax values, i.e. decreasing of KM values as H2O2 concentrations are higher. For example, at 

pH 6.0, Vmax in the assay with 25 μM H2O2 is 276.83 ± 4.46 Ug-1, then with 100 μM H2O2 it 

goes down and amounts 223.77 ± 16.06 Ug-1 to get 352.79 ± 43.58 Ug-1 with 300 μM H2O2. 

The same thing is happening with the KM (245.44 ± 74.71 mM, 96.82 ± 12.56 mM and 144.75 

± 28.16 mM, respectively).  
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Figure 25. Results for LPMO activity for different DMP concentrations spectrophotometricaly 

measured in succinic-phosphoric buffer at pH 6.0 with A) 2 μM H2O2 and B) 5 μM 

H2O2. 
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Figure 26. Results for LPMO activity for different DMP concentrations spectrophotometricaly 

measured in succinic-phosphoric buffer at pH 7.0 with A) 2 μM H2O2 and B) 5 

μM H2O2. 
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4.6. LIMIT OF DETECTION (LoD) 

Table 9. Results of spectrophotometricaly measured specific activity of different LPMO 

concentrations. 

Dilutions 

 

LPMO concentration [µM] 

 

Ug-1 

D0 = original sample 10 18.41 ± 0.86 

D2 = 2x diluted 5 13.12 ± 0.75 

D4 = 4x diluted 2.5 8.43 ± 0.14 

D8 = 8x diluted 1.25 4.83 ± 0.04 

D10 = 10x diluted 1 3.93 ± 0.34 

D20 = 20x diluted 0.5 1.95 ± 0.09 

D40 = 40x diluted 0.25 1.02 ± 0.04 

D80 = 80x diluted 0.125 0.58 ± 0.03 

D100 = 100x diluted 0.1 0.42 ± 0.05 

D200 = 200x diluted 0.05 0.24 ± 0.01 

D400 = 400x diluted 0.025 0.10 ± 0.02 

D800 = 800x diluted 0.0125 0.06 ± 0.02 

 

Since the original sample is 10 μM LPMO and its specific activity is 18.41 ± 0.86   

Ug-1, it is expected that all the other solutions would have as lower activity as they are diluted. 

That is not exactly the case. 5 μM LPMO shows specific activity of 13.12 ± 0.75 Ug-1 which 

is ~1.4 and not two times lower then the activity of the original sample. 2.5 μM LPMO has 

the activity of 8.43 ± 0.14 Ug-1, which is ~2 times lower than 10 μM LPMO and ~1.5 lower 

than 5 μM LPMO. Eight times diluted LPMO (1.25 μM) is 4.83 ± 0.04 Ug-1which is ~3.8 

times lower than the activity of non diluted LPMO (18.41 ± 0.86 Ug-1) and not 8 times as it is 

expected. The same is when comparing to D2 or D4. D10 is ten times diluted LPMO (1 μM) 

and comparing to D0, it has ~4.7 lower activity (3.93 ± 0.34 Ug-1 to 18.41 ± 0.86 Ug-1). On 

the other hand, dilutions made from D10 are D20, D40 and D80 and has ~2, ~3.9 and ~6.8 

times less activity, respectively. These results are good ovarlepping with expectations. 0.1 μM 

LPMO (D100) should have one hundred times lower activity than 10 μM LPMO, but 
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experiments show ~44 times. Dilutions made from D100 are D200, D400 and D800 and they 

has 1.75, 4.2 and 7 times lower activities, respectively.  

These results from Table 9 leads to the conclusion that higher concentrations of 

LPMO are not following regularity of the dilutions as lower concentrations. In Figure 27 it is 

visible that above some concentration, LPMOs activity is starting leveling of.  

 

 

Figure 27. Correlation beetween specific activity [Ug-1] and LPMO concentration [μM]. 

As mentioned above, after 1.25 μM LPMO the slope is leveling of. It is also 

interesting that standard deviations are larger in this case, so assays this way should not be 

done at higher LPMO concentration because the linear slope will not appear and the results 

will be hard to determine.  

The main purpose of this experiment was to determine LoD, i.e. the lowest LPMO 

concentration which will produce a signal greater and can reliably be distinguished from the 

analytical noise. It is calculated that standard deviation of blanks amounts 9.29 * 10-7 AU 

(Apsorbance units) and standard deviation of absorbance measured for the lowest LPMO 

concentration (0.0125 μM) is 5.55 * 10-6 AU which is ~18 times higher. Since, in theory, 

standard deviation of the lowest analyte concentration should be at least three times higher 

than the blank, conclusion is that 0.0125 μM LPMO is enough to do activity assay in these 
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conditions. This concentration is the lowest to definitely detect LPMO activity, however, the 

signal is very low and should only show in which range activity can be detected. For 

measurements,the concentration of LPMO around 0.5 µM should be used.  
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5. CONCLUSIONS 

1. In order to establish an activity assay for LPMO without using its natural 

substrate, DMP manifested as the one compound that shows the best properties 

(spectra is not affected by any other components of the assay) for detecting 

LPMO activity. In the absence of H2O2 activity is much lower, which means 

that hydrogen peroxide plays an important role as the LPMO co-substrate. On 

the other hand, it must be added responsibly due to the inhibition effect at too 

high concentrations. The best buffers for the assay are combinations of 

succinic and phosphoric acid buffer and pyridine and imidazol buffer. Activity 

can be determined in a very wide range of pH values ( from ~4.5 to ~8.0). 

2. Because of the copper ion in its active site, LPMO can not withstand high 

concentrations of EDTA. The same effect is with heat. After 30 minutes at 

~100°C LPMO activity is lower about five times. What has to be considered 

when working with LPMO is concentration of compounds with copper in the 

solution because it is proven that their activity is increasing with concentration 

and LPMO activity can be interpreted wrong if this is a case. 

3. The activation energy for LPMO is 58.92 kJmol-1. This is the amount of energy 

that is required to overcome the activation barrier in the conversion of reactants 

into products. 

4. According to results in calculations of KM and Vmax values, it is one more time 

proven that hydrogen peroxide is a good co-substrate for LPMO. On the other 

hand, DMP is not showing Michaelis-Menten curve, but it is linear as in non-

catalyzed reactions, which leads to conclusion it is not a natural substrate for 

LPMO. 

5. The highest LPMO concentration that should be used in activity assay is ~1.25 

μM because all the tested concentrations above show deviation from linearity. 

Contrary, the lowest LPMO concentration that can be used in assay is ~0.0125 

μM. 
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7. APPENDIX 

7.1. KM AND Vmax VALUES MEASURED FOR H2O2 IN SUCCINIC-

PHOSPHORIC BUFFER AT pH 7.5 

Table 10. KM and Vmax values of LPMO for H2O2 calculated for different DMP concentrations 

measured in succinic-phosphoric buffer at pH 7.5. 

DMP [mM] Vmax [Ug-1] KM [μM] 

0.5 20.11 ± 0.84 5.39 ± 1.16 

1 34.88 ± 0.85 10.69 ± 1.13 
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Figure 28. Michaelis-Menten curve for H2O2 as a co-substrate for LPMO in the succinic-

phosphoric buffer at pH 7.5 with: A) 0.5 mM DMP and B) 1 mM DMP. 
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7.2. LIST OF ABBREVIATIONS 

 

AA Auxiliary activities 

AU Apsorbance units 

CBM Carbohydrate-binding module 

CDH Cellobiose dehydrogenase 

DMP 2,6-dimethoxyphenol 

EDTA Ethylenediaminetetraacetic acid 

GH Glycoside hydrolase 

HPLC High performance liquid chromatography 

LPMO(s) Lytic polysaccharide monooxygenase (s) 
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