Priprava i konformacijska analiza ferocenskih tripeptida Ala-Pro sekvence izvedenih iz ferocen-1,1'diamina

Stipčić, Tea

Master's thesis / Diplomski rad

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Food Technology and Biotechnology / Sveučilište u Zagrebu, Prehrambeno-biotehnološki fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:159:063241

Rights / Prava: <u>Attribution-NonCommercial-NoDerivs 3.0 Unported/Imenovanje-Nekomercijalno-Bez</u> <u>prerada 3.0</u>

Download date / Datum preuzimanja: 2025-03-10

Repository / Repozitorij:

Repository of the Faculty of Food Technology and Biotechnology

SVEUČILIŠTE U ZAGREBU PREHRAMBENO-BIOTEHNOLOŠKI FAKULTET

DIPLOMSKI RAD

Zagreb, srpanj 2020.

Tea Stipčić 1186/N

PRIPRAVA I KONFORMACIJSKA ANALIZA FEROCENSKIH TRIPEPTIDA ALA-PRO SEKVENCE IZVEDENIH IZ FEROCEN-1,1'-DIAMINA

Rad je izrađen u Laboratoriju za organsku kemiju na Zavodu za kemiju i biokemiju Prehrambeno-biotehnološkog fakulteta Sveučilišta u Zagrebu pod mentorstvom doc.dr.sc. Monike Kovačević, Prehrambeno-biotehnološkog fakulteta Sveučilišta u Zagrebu. Zahvaljujem svojoj mentorici doc.dr.sc. Moniki Kovačević na svom prenesenom znanju, trudu i pomoći tijekom izrade diplomskog rada.

Veliko hvala svim djelatnicima Laboratorija za organsku kemiju te izv.prof.dr.sc. Vesni Petrović Peroković, doc.dr.sc. Ivanu Kodrinu i dr.sc. Sunčici Roca na susretljivosti i pomoći.

Hvala i mojim kolegicama i prijateljicama Dodo, Sandri i Anji koje su uspomenu na studentske dane učinile ljepšom i snažnijom.

Posebnu zahvalnost iskazujem svojoj obitelji, mami Snježani, tati Igoru te sestri Heli na bezuvjetnoj ljubavi, potpori i motivaciji tijekom cijelog školovanja i odrastanja.

Također zahvaljujem Mariji i Ivici na velikoj vjeri i potpori.

Hvala i mom Marku čija su me neizmjerna ljubav i vjera vodile k ovom uspjehu.

TEMELJNA DOKUMENTACIJSKA KARTICA

Diplomski rad

Sveučilište u Zagrebu Prehrambeno-biotehnološki fakultet Zavod za kemiju i biokemiju Laboratorij za organsku kemiju

Znanstveno područje: Biotehničke znanosti Znanstveno polje: Nutricionizam

PRIPRAVA I KONFORMACIJSKA ANALIZA FEROCENSKIH TRIPEPTIDA ALA-PRO SEKVENCE IZVEDENIH IZ FEROCEN-1,1'-DIAMINA

Tea Stipčić, 1186/N

Sažetak:

Biološka primjena prirodnih peptida ograničena je njihovim nepoželjnim svojstvima (konformacijska fleksibilnost, niska stabilnost) zbog čega se intenzivno istražuje područje peptidomimetika. Ferocenski konjugati s aminokiselinama često se koriste kao peptidomimetici jer su se 1, *n*-disupstituirani ferocenski biokonjugati pokazali dobrim kalupom za tvorbu intramolekulskih vodikovih veza. Sekvence bogate alaninom i prolinom pokazuju brojna poželjna svojstva (visoka topljivost, stabilnost i biodostupnost), dok ferocenski diamin inducira tvorbu intramolekulskih vodikovih veza koje su stabilizirane 14-članim prstenovima.

U ovom Diplomskom radu opisana je sinteza i konformacijska analiza ferocenskih tripeptida **12-15** [Ac-L(D)-Ala-D-Pro-NH-Fn-NH-L(D)-Pro-Boc, Fn = ferocenilen, Ac = acetil, Boc = *tert*butoksikarbonil] kao i njihovih prekursora **2-5** [Boc(Ac)-L(D)-Ala-D-Pro-NH-Fca-COOMe], izvedenih iz ferocen-1,1'-diamina i peptidne sekvence Ala-Pro. Utjecaj kiralnosti pojedinih aminokiselina u peptidnom lancu, kao i *N*-terminalnih zaštitnih skupina (Boc, Ac) ispitani su spektroskopskom analizom (IR-, NMR- i CD-spektroskopija) te potkrijepljeni DFT-računima. Pokazalo se da promjenom kiralnosti aminokiselina dolazi do promjene u obrascima vodikovih veza, dok zaštitne skupine nemaju utjecaj na tvorbu istih.

Ključne riječi: ferocen, sekundarna struktura, konformacijska analiza, peptidomimetici, DFT

Rad sadrži: 69 stranica, 36 slika, 7 tablica, 5 shema, 118 literaturnih navoda, 6 priloga

Jezik izvornika: hrvatski

Rad je u tiskanom i elektroničkom (pdf format) obliku pohranjen u: Knjižnica Prehrambeno-

biotehnološkog fakulteta, Kačićeva 23, Zagreb

Mentor: doc.dr.sc. Monika Kovačević

Stručno povjerenstvo za ocjenu i obranu:

- 1. Prof. dr. sc. Lidija Barišić
- 2. Doc. dr. sc. Monika Kovačević
- 3. Prof. dr. sc. Renata Teparić
- 4. Prof. dr. sc. Jasna Mrvčić (zamjena)

Datum obrane: 16. srpnja 2020.

BASIC DOCUMENTATION CARD

Graduate Thesis

University of Zagreb Faculty of Food Technology and Biotechnology Department of Chemistry and Biochemistry Laboratory for Organic Chemistry

Scientific area: Biotechnical Sciences Scientific field: Nutrition

SYNTHESIS AND CONFORMATIONAL ANALYSIS OF FERROCENE TRIPEPTIDES DERIVED FROM FERROCENE-1,1'-DIAMINE AND ALA-PRO SEQUENCE

Tea Stipčić, 1186/N

Abstract:

The biological application of natural peptides is limited by their undesirable properties (conformational flexibility, low stability), therefore the field of peptidomimetics is being intensively investigated. As the 1, *n*-disubstituted ferrocene bioconjugates have been established as good motif for the formation of intramolecular hydrogen bonds, ferrocene conjugates with amino acids are often used as peptidomimetics. Regarding to that alanine- and proline-rich sequences exhibit a number of desirable properties (high solubility, stability, and bioavailability), as well as the ferrocene diamine induces the formation of intramolecular hydrogen bonds that are stabilized by forming 14-membered rings we have decided to prepare new type of peptidomimetics.

This Graduate Thesis describes the synthesis and conformational analysis of ferrocene tripeptides 12-15 [Ac-L(D)-Ala-D-Pro-NH-Fn-NH-L(D)-Pro-Boc, Fn = ferrocenylene, Ac = acetyl, Boc = *tert*-butoxycarbonyl] as well as their precursors 2-5 [Boc(Ac)-L(D)-Ala-D-Pro-NH-Fca-COOMe], derived from ferrocene-1,1'-diamine and Ala-Pro peptide sequences. The influence of chirality of individual amino acids in the peptide chain, as well as *N*-terminal protecting groups (Boc, Ac) were examined by spectroscopic analysis (IR-, NMR- and CD-spectroscopy) and supported by DFT-calculations. It has been shown that change in the chirality of amino acids leads to change in the hydrogen bond patterns, while the protecting groups have no effect on their formation.

Keywords: ferrocene, secondary structure, conformational analysis, peptidomimetics, DFT

Thesis contains: 69 pages, 36 figures, 7 tables, 5 shemes, 118 references, 6 supplements

Original in: Croatian

Graduate Thesis in printed and electronic (pdf format) version is deposited in: Library of the

Faculty of Food Technology and Biotechnology, Kačićeva 23, Zagreb.

Mentor: PhD Monika Kovačević, Assistant Professor

Reviewers:

- 1. PhD. Lidija Barišić, Full Professor
- 2. PhD. Monika Kovačević, Assistant Professor
- 3. PhD. Renata Teparić, Full Professor
- 4. PhD. Jasna Mrvčić, Full Professor (substitute)

Thesis defended: 16th July 2020

SADRŽAJ

1. UVOD	1
2. TEORIJSKI DIO	2
2.1. PEPTIDI I PROTEINI	2
2.2. SEKUNDARNA STRUKTURA PEPTIDA I PROTEINA	3
2.3. PROLIN I ALANIN	5
2.3.1. Prolin	5
2.3.2. Alanin	7
2.3.3. Važnost sekvence prolin/alanin	9
2.4. FEROCEN I FEROCENSKI PEPTIDI	9
2.4.1. Ferocen	9
2.4.2. Ferocenski peptidi	12
2.4.2.1. Ferocenski konjugati Fn-[CO-(AA) _m -OMe] ₂ (I) izvedeni iz Fcd (IV)	14
2.4.2.2. Ferocenski konjugati Y-(AA)n-Fca-(AA)m-OMe (II) izvedeni iz Fca (V)	17
2.4.2.3. Ferocenski konjugati Fn-[NH-(AA)m-Y]2 (III) izvedeni iz Fcda (VI)	20
2.5. TEORIJA FUNKCIONALA GUSTOĆE (DFT, eng. Density Functional Theory)	23
3. EKSPERIMENTALNI DIO	24
3.1. MATERIJALI I METODE	24
3.2. POSTUPAK PRIPRAVE FEROCENSKIH PEPTIDA	27
3.2.1. Postupak priprave dipeptida 1	27
3.2.2. Postupak priprave tripeptida 2 i 3	28
3.2.3. Postupak priprave tripeptida 4 i 5	29
3.2.4. Postupak priprave Ac-L-Ala-D-Pro-Fca-OH (6) i Ac-D-Ala-D-Pro-Fca-OH (7)	31
3.2.5. Postupak priprave Ac-L-Ala-D-Pro-Fca-CON ₃ (8) i Ac-D-Ala-D-Pro-Fca-CON ₃ (9)	31
3.2.6. Postupak priprave Ac-L-Ala-D-Pro-Fn-NHBoc (10) i Ac-D-Ala-D-Pro-Fca-NHBoc (11)	32
3.2.7. Postupak priprave tripeptida Ac-L-Ala-D-Pro ¹ -NH ¹ -Fn-NH ² -L-Pro ² -NBoc (12),	
Ac-L-Ala-D-Pro ¹ -NH ¹ -Fn-NH ² -D-Pro ² -NBoc (13),	
Ac-D-Ala-D-Pro ¹ -NH ¹ -Fn-NH ² -L-Pro ² -NBoc (14) i	
Ac-D-Ala-D-Pro ¹ -NH ¹ -Fn-NH ² -D-Pro ² -NBoc (15)	33
4. REZULTATI I RASPRAVA	36
4.1. UVOD	36
4.2 SINTEZA I KONFORMACIISKA ANALIZA PREKURSORA TRIPEPTIDA IIIa	37
4.2.1 Sinteza dipentida Boc-D-Pro-Fca-OMe (1)	37
4.2.2. Sinteza i konformacijska analiza tripentida Boc-L-Ala-D-Pro-NH-Fca-COOMe (2).	51
Boc-D-Ala-D-Pro-NH-Fca-COOMe (3) Ac-I-Ala-D-Pro-NH-Fca-COOMe (4) i	
Ac-D-Ala-D-Pro-NH-Fca-COOMe (5)	38
42.21 Sinteza tripentidâ 2-5	38
4 2 2 2 IR-spektroskopska analiza tripeptidâ 2-5	39
4 2 2 3 NMR-spektroskopska analiza tripeptida 2-5	43
4.2.2.4 CD-spektroskopska analiza tripeptida 2-5	45
4.3. SINTEZA I KONFORMACIJSKA ANALIZA TRIPEPTIDA IIIa	47
4.3.1. Sinteza i konformacijska analiza tripeptida Ac-I-Ala-D-Pro-NH-Fn-NH-I-Pro-Boc (12)	.,
Ac-L-Ala-D-Pro-NH-Fn-NH-D-Pro-Boc (13). Ac-D-Ala-D-Pro-NH-Fn-NH-L-Pro-Boc (14)	
i Ac-D-Ala-D-Pro-NH-Fn-NH-D-Pro-Boc (15)	47

4.3.1.1. Sinteza tripeptidâ 12-15	47
4.3.1.2. IR-spektroskopska analiza tripeptidâ 12-15	48
4.3.1.3. NMR-spektroskopska analiza tripeptidâ 12-15	51
4.3.1.4. CD-spektroskopska analiza tripeptidâ 12-15	52
4.3.1.5. DFT-modeliranje tripeptidâ 12-15	54
5. ZAKLJUČCI	59
6. LITERATURA	61
7. PRILOZI	

1. UVOD

Odlučujući faktor biološke aktivnosti i primjene prirodnih peptida jesu njihova konformacijska fleksibilnost, niska stabilnost te biodostupnost što izravno ima utjecaj i na mogućnost korištenja proteina u terapeutske svrhe, pa se stoga intenzivno istražuje područje peptidomimetika. Znanost o materijalima, medicina, organska sinteza, bioorganometalna kemija i biokemija, asimetrična kataliza, nelinearna optika, znanost o polimerima te biosenzorika i elektrokemija područja su široke primjene ferocena. Poboljšanje aktivnosti određenih terapeutika postiže se ugradnjom ferocena u bioaktivne ili molekule već postojećeg lijeka, a zahvaljujući lipofilnom karakteru molekule ferocena, ferocenski derivati lako prolaze stanične membrane. Stoga su istraživanja na ferocenski peptidi zauzimaju posebno mjesto. Naime, konjugacijom ferocenske osnove (Fcd, Fca, Fcda) i različito strukturiranih peptidnih lanaca, dolazi do tvorbe *vodikove veze* koja inducira nastajanje više elemenata sekundarne strukture.

Cilj ovog rada bila je priprava i konformacijska analiza ferocenskih tripeptida **12-15** [Ac-L(D)-Ala-D-Pro-NH-Fn-NH-L(D)-Pro-Boc, Fn = ferocenilen, Ac = acetil, Boc = *tert*-butoksikarbonil] (Slika 1) kao i njihovih prekursora **2-5** [Boc (Ac)-L(D)-Ala-D-Pro-NH-Fca-COOMe] izvedenih iz ferocen-1,1'-diamina i peptidne sekvence Ala-Pro. Pri tome će se alterirati zaštitne skupine (Boc, Ac) kao i kiralnost uvedenih aminokiselina [L(D)-Pro, L(D)-Ala], da bi se ispitao utjecaj spomenutih elemenata na tvorbu intramolekulskih vodikovih veza [IHB, (engl. *Intramolecular Hydrogen Bond*)] kao preduvjeta za tvorbu različitih okreta.

Slika 1. Ciljni tripeptidi 12-15

2. TEORIJSKI DIO

2.1. PEPTIDI I PROTEINI

Peptidi i proteini imaju važnu ulogu u brojnim životnim procesima uključujući enzimsku katalizu, prijenos i pohranu određenih molekula i iona, pokretljivost mišića, čvrstoću kosti i kože, zaštitu imunološkog sustava, stvaranje i provođenje živčanih impulsa te kontrolu rasta i diferencijaciju stanica. Sastavljeni su od 20 aminokiselina povezanih amidnom, odnosno peptidnom vezom, koje se međusobno razlikuju u veličini, obliku, sposobnosti stvaranja vodikovih veza, naboju te kemijskoj reaktivnosti. Zahvaljujući strukturnim različitostima aminokiselina i njihovim funkcijskim skupinama, peptidima i proteinima pripisuje se cijeli niz bioloških funkcija [1, 2].

Peptidna veza je amidna veza koja nastaje između α -karboksilne skupine jedne i α amino skupine druge aminokiseline. Amidna veza pokazuje visoku stabilnost u različitim reakcijskim uvjetima (kiselim ili lužnatim) i u prisutnosti drugih kemikalija te pri visokim temperaturama. Visoka stabilnost amidne veze proizlazi iz sklonosti veze k stvaranju rezonantnih struktura (Slika 2), što joj daje svojstva dvostruke veze. Budući da veza između karbonilnog ugljika i dušikovog atoma peptidne jedinice djelomično posjeduje karakter dvostruke veze, oko nje nema slobodne rotacije, a iz toga proizlazi i planarnost peptidne veze. S druge strane, oko veza između α -ugljikova atoma i karbonilnog ugljikova atoma te α ugljikova atoma i dušikova atoma s obje strane peptidne jedinice postoji visok stupanj slobodne rotacije. Upravo ta ograničena rotacija oko peptidne veze i slobodna rotacija oko α -ugljikova atoma definiraju trodimenzionalnu strukturu svih proteina [1, 3, 4].

Slika 2. Rezonancija amidne veze

Proteinske molekule mogu se opisati pomoću četiri razine strukturnih elemenata: primarne, sekundarne, tercijarne i kvaterne strukture. Primarna struktura odnosi se na linearni slijed aminokiselina povezanih peptidnim vezama. Sekundarna struktura određena je prostornim odnosom susjednih aminokiselinskih ostataka polipeptidnog lanca, a stabiliziraju ju vodikove veze između amino i karbonilne skupine na okosnici peptida. Prostorni odnos između svih aminokiselina polipeptidnog lanca predstavlja tercijarnu strukturu. Oblikovanje tercijarne strukture dovodi do približavanja aminokiselinskih ostataka koji su u primarnom slijedu aminokiselina udaljeni jedan od drugoga, a posljedično i do oblikovanja trodimenzionalne strukture polipeptida. Kvaterna struktura podrazumijeva prostorni odnos između polipeptidnih lanaca ili podjedinica unutar istog proteina [1, 5].

2.2. SEKUNDARNA STRUKTURA PEPTIDA I PROTEINA

Otprilike 50 % strukture svih proteina zauzima jedan od oblika sekundarne strukture. Glavni predstavnici sekundarnih struktura jesu α -uzvojnica i β -nabrana ploča (Slika 3) [6] te razni okreti.

Slika 3. Sekundarne strukture: a) α -uzvojnica i b) β -nabrana ploča

 α -Uzvojnica je štapićasta struktura u kojoj je polipeptidna okosnica čvrsto uvijena, a pobočni ogranci aminokiselina izbočeni na vanjskoj strani same uzvojnice. Karbonilna skupina svake aminokiseline *n* povezana je vodikovom vezom s amino skupinom aminokiseline *n*+4 [5].

β-Nabranu ploču karakterizira istegnuti polipeptidni lanac, a stabilizirana je vodikovim vezama između karbonilnih i amino skupina različitih polipeptidnih lanaca. Ovisno o

usmjerenju polipeptidnih lanaca, β -nabrana ploča može biti paralelna pri čemu su lanci orijentirani u istom smjeru te antiparalelna pri čemu su lanci suprotnog usmjerenja [1].

Okreti omogućavaju promjenu smjera polipeptidnih lanaca pa tako tvore globularni i kompaktni oblik molekule proteina. Dijele se na α -, β -, γ -, δ - i π - okrete (Slika 4). Najčešći su β -okreti pri čemu je karbonilna skupina aminokiseline *n* povezana vodikovom vezom s amino skupinom aminokiseline *n*+3 što dovodi do naglog okreta polipeptidnog lanca [1].

Slika 4. Prikaz najčešćih okreta ($\gamma \rightarrow 7$ -člani prsten, $\beta \rightarrow 10$ -člani prsten i $\alpha \rightarrow 13$ -člani prsten)

Sekundarna struktura je vrlo važna razina hijerarhijske klasifikacije proteinskih struktura koja je nužna za prepoznavanje trodimenzionalne strukture proteina [7]. Zeeshan i suradnici pokazali su ovisnost biološke aktivnosti proteina o veličini promjene njihove sekundarne strukture, što posljedično može poslužiti u korištenju proteina u terapeutske svrhe. Sekundarna struktura peptida ima važnu ulogu u biološkoj aktivnosti antimikrobnih peptida. Analozi peptida sa strukturom α -uzvojnice pokazali su jaču antimikrobiološku aktivnost protiv Gram-pozitivnih i Gram-negativnih bakterija u odnosu na β -nabranu ploču [8-10].

Sekundarna se struktura dokazuje pomoću IR-spektroskopije (IR, eng. *Infrared*), NMRspektroskopije (NMR, eng. *Nuclear Magnetic Resonance*) i CD-spektroskopije (CD, eng. *Circular Dichroism*). Spektroskopska mjerenja služe za procjenu agregacije i stabilnosti proteina, ali i njegovih strukturnih značajki koje se smatraju kritičnima za biološku aktivnost proteina [11]. IR-spektroskopija daje informaciju o konformacijskom prostoru peptida u otopini. Pomoću nje se procjenjuje proteinska struktura određivanjem frekvencije pri kojoj kemijske veze apsorbiraju infracrveno zračenje, a jačina apsorpcije raste povećanjem polarnosti kemijskih veza [11-13].

Nuklearna magnetska rezonanca je spektroskopska metoda koja daje pouzdan i detaljan uvid u strukturu makromolekula, uključujući i proteine. Metoda pruža informaciju o lokaciji sekundarnih strukturnih elemenata unutar proteinske sekvence [11].

CD-spektroskopija je metoda koja opisuje različitu apsorpciju lijevog i desnog polariziranog zračenja kiralnih molekula ili molekula s trodimenzionalnom strukturom koja osigurava kiralno okruženje. Cirkularni dikroizam daje informaciju o strukturnim elementima koji sudjeluju u oblikovanju sekundarne strukture, ali i o utjecaju temperature, pH, naboja i liganda na istu [14, 15].

2.3. PROLIN I ALANIN

2.3.1. Prolin

Prolin je jedna od 20 proteinogenih aminokiselina koju odlikuje iznimna konformacijska krutost. Unutar prstena sadrži α -dušikov atom koji utječe na bazičnost, ali i polarnost prolinskog ostatka. Sekundarni amin prolina, tijekom njegove ugradnje u biopolimere, prelazi u tercijarni amin što onemogućava stvaranje vodikove veze i može utjecati na prekid strukture peptida i proteina. Štoviše, smatra se kako prolin usporava brzinu sinteze proteina povećanjem entropije stvaranja peptidne veze [16-20].

Usprkos tome, prolin stabilizira sekundarne strukture peptida poput okreta, osobito ako se nalazi ispred ili iza aromatske aminokiseline, i uzvojnica (poliprolin I i poliprolin II uzvojnica). Takva su konformacijska svojstva potakla brojna istraživanja vezana uz razvoj prolinskih analoga korisnih, između ostalog, i za sintezu bioaktivnih peptida [18, 21-24].

Amidna veza koju tvori prolin može biti u *cis* (5 %) i *trans* (95 %) položaju (Slika 5). Cis-trans izomerizacija prolinskih sekvenci utječe na funkcije peptida i proteina u biološkim sustavima poput ulaska u stanicu, oligomerizacije, smatanja i katalize [21, 25].

Slika 5. Cis-trans izomerizacija prolinske amidne veze

Peptidne sekvence bogate prolinom mogu stvarati konformaciju uzvojnice: poliprolin I (PPI, eng. *Polyproline I helix*) i poliprolin II uzvojnicu (PPII, eng. *Polyproline II helix*). Poliprolin I uzvojnica posjeduje *cis*-amidne veze u polarnim organskim otapalima te njena struktura nije pronađena u biološkim sustavima. S druge strane, poliprolin II uzvojnica stvara *trans*-amidne veze u vodenim otopinama, a prisutna je u proteinima poput kolagenske trostruke uzvojnice i rjeđe u globularnim proteinima gdje se svaki zavoj uzvojnice sastoji od 3 aminokiselinska ostatka (Slika 6).

Slika 6. Dio poliprolin II uzvojnice

Karbonilne skupine su u PPII strukturi konformacijski ograničene i bogate elektronima, stoga predstavljaju dobra vezna mjesta za vodik. Osim toga, dostupnost PPII uzvojnica povećana je njihovim položajem na amino- ili karboksi-terminalnom kraju proteina, a njihova im krutost olakšava vezanje određenih molekula u odnosu na ostale peptidne sekvence. Veze koje stvaraju prolinom bogate sekvence slabije su od onih u globularnim domenama, no one, s druge strane, omogućuju brže i lakše moduliranje prolinom bogatih regija [18, 23, 26].

Prolin sudjeluje u zaštiti proteinskog integriteta smanjujući njihovu osjetljivost na većinu peptidaza te u povećanju aktivnosti raznih enzima [16, 17]. Proteinima sline pripada 70 % prolinom bogatih proteina kojima se pripisuje nekoliko uloga, a vezanje biljnih polifenola (tanina) prisutnih u ljudskoj prehrani te smanjenje njihovih štetnih učinaka jedne su od najznačajnijih [27]. Pojedina istraživanja pripisuju prolinu i antioksidativna svojstva [28-32]:

- smanjenje razine reaktivnih kisikovih vrsta (ROS, eng. *Reactive Oxygen Species*) u gljivica i kvasaca, a posljedično i sprječavanje programirane stanične smrti,
- zaštita ljudskih stanica od oksidativnog stresa koji može uzrokovati kancerogenezu te
- smanjenje lipidne peroksidacije u stanicama algi izloženih teškim metalima.

2.3.2. Alanin

Alanin je glukogena aminokiselina koja čini veliki udio svih aminokiselina većine proteina. Aminokiseline poput valina, leucina i izoleucina mogu se pretvoriti u alanin. Razgradnjom mišićnih proteina, tijekom posta ili drugog stresa, alanin se u velikim količinama oslobađa u krvotok te dospijeva u jetru gdje prelazi u piruvat, a potom i u glukozu koja može poslužiti skeletnim mišićima kao izvor energije [33].

Budući da se vodikove veze između peptida i molekula vode natječu s vodikovim vezama u uzvojnici peptida, α-uzvojnica ne pokazuje potpunu stabilnost u vodi [34, 35]. Marqusee i suradnici uočili su oblikovanje α-uzvojnice u peptidima koji sadrže samo alanin i manji broj nabijenih aminokiselinskih ostataka, lizina i glutamata što implicira ulogu alanina u stabiliziranju kratkih uzvojnica. Najvjerojatnije objašnjenje ovih rezultata je veliki potencijal individualnih alaninskih ostataka u oblikovanju uzvojnica, budući da nema interakcija pobočnih lanaca koje bi ih mogle stabilizirati [34]. Alanin je, među 20 proteinogenih aminokiselina, najviše sklon stvaranju uzvojnice (Slika 7), što ukazuje na ulogu metilnog pobočnog ogranka u smanjenju konformacijske slobode glavnog lanca u nesmotanom stanju [36].

Slika 7. Tvorba α -uzvojnice u poli-Ala peptidu

Poli-Ala peptidi s otprilike 10 ostataka koji stvaraju α -uzvojnicu nisu topljivi u vodi zbog nedostatka skupina koje mogu vezati vodik [37]. Topljivost alaninskih peptida može se povećati uvođenjem 3 ili više nabijenih ostataka, lizina ili glutaminske kiseline [34]. Supstitucija pojedinog alaninskog ostatka u peptidima nekom drugom aminokiselinom uzrokuje određene promjene u količini nastalih uzvojnica [36, 38-40]. Supstitucijom alanina glicinom u peptidima, ovisno o poziciji iste, dolazi do destabilizacije α -uzvojnice ako je, prema Lifson-Roig teoriji, omjer *s* vrijednosti¹ za alanin:glicin velik [41].

S druge strane, konformacijski temeljena istraživanja na kratkolančanim alaninskim peptidima polučila su različite rezultate. Istraživanje kationskog trialanina dovelo je do zaključka da on zauzima dvije konformacije na sobnoj temperaturi: strukturu sličnu poliprolin II uzvojnici (≥ 80 %) i manje α_R -uzvojnicu [42]. Međutim, temeljem spektroskopskih mjerenja utvrđena je prisutnost 50 % poliprolin II uzvojnice i 50 % strukture slične β -nabranoj ploči [44, 45], dok tetraalanin zauzima većinom oblik poliprolin II uzvojnice u vodi [46]. Poliprolin II uzvojnica pokazala se dominantnom konformacijom alaninskih peptida, a sklonost alanina stvaranju iste povećava se s brojem ostataka [47, 48]. Graf i suradnici utvrdili su kako približno 90 % trialanina zauzima strukturu poliprolin II uzvojnice, a približno 10 % strukturu β -nabrane ploče, dok struktura α -uzvojnice nije pronađena. Produljenjem lanca s tri na sedam alaninskih ostataka nije došlo do promjena u raspodjeli konformacija [49].

¹ *s* vrijednost predstavlja parametar Zimm-Brag modela pomoću kojeg se određuje sklonost stvaranju uzvojnice [43].

2.3.3. Važnost sekvence prolin/alanin

Uvođenjem prolinskih ostataka u sekvencu poli-Ala peptida dolazi do ometanja vodikovih veza i alaninski ostaci ne mogu više stablizirati strukturu uzvojnice [50]. Sekvence koje sadrže alanin i prolin imaju veću mobilnost od sekvenci koje sadrže samo alanin ili samo prolin [51]. Sekvence bogate prolinom i alaninom (PAS, eng. *Pro/Ala-rich sequences*) pokazuju visoku topljivost u puferima i odsutnost sekundarne i tercijarne strukture. Proteini konjugirani s biosintetskim polimerima građenima od prolina, alanina i/ili serina pokazuju brojna poželjna svojstva [52]:

- visoka topljivost i stabilnost,
- potpuna biološka funkcionalnost u in vitro i životinjskim modelima,
- visoka biodostupnost tijekom subkutane, intraperitonealne i intramuskularne primjene,
- značajno produljeno vrijeme poluživota u plazmi ovisno o duljini PAS lanca.

2.4. FEROCEN I FEROCENSKI PEPTIDI

2.4.1. Ferocen

Ferocen [Fe(C₅H₅)₂] je slučajno otkrivena molekula građena od dva anionska ciklopentadienilna prstena koji doniraju 6 π elektrona Fe²⁺ kationu smještenom između njih (struktura "sendviča") [53]. Iznimna svojstva čine ferocen vrlo važnom molekulom u organometalnoj kemiji [54]:

- stabilan je na zraku i do 400 °C,
- reagira kao superaromatski elektrofil,
- blago i reverzibilno oksidira oko + 0.4 V nasuprot zasićene kalomelne elektrode (Slika 8) i
- dobro je topljiv u organskim otapalima.

Slika 8. Reverzibilna oksidacija ferocena

Znanost o materijalima, medicina, organska sinteza, bioorganometalna kemija i biokemija, asimetrična kataliza, nelinearna optika, znanost o polimerima te biosenzorika i elektrokemija područja su široke primjene ferocena [55]. Poboljšanje aktivnosti određenih terapeutika postiže se ugradnjom ferocena u bioaktivne ili molekule već postojećeg lijeka (npr. ferokin) ili zamjenom fenilnog prstena s ferocenom (npr. ferocifen) [56]. Zahvaljujući lipofilnom karakteru molekule ferocena, ferocenski derivati lako prolaze stanične membrane [57]. Istraživanja na ferocenskim derivatima usmjerena su na razvoj visoko učinkovitih i slabo toksičnih antikanceroznih lijekova, a najvjerojatniji mehanizam djelovanja takvih lijekova jest inicijacija apoptoze tumorskih stanica pri čemu dolazi do zaštite telomere od djelovanja telomeraze i/ili smanjenja njezine aktivnosti [58]. Ferocifen je bioorganometalni terapeutik sintetiziran prema strukturi primarnih lijekova u terapiji raka dojke, tamoksifena i hidrotamoksifena (Slika 9), a pokazuje učinkovitost i prema hormonski ovisnim [ER (+)] i hormonski neovisnim [ER (-)] vrstama raka dojke [59]. Iako mehanizam antiproliferativnog učinka hidroksiferocifena nije u potpunosti razjašnjen, vjerojatnim se smatra vezanje ferocifena u aktivno mjesto estrogenskog receptora zahvaljujući interakcijama s His524 i Asp351 [60].

Slika 9. (a) Tamoksifen (R=H), hidroksitamoksifen (R=OH), (b) hidroksiferocifen

Ferocen posjeduje veliki potencijal u kreiranju antioksidansa što implicira njegovu primjenu u razvoju novih vrsta lijekova za bolesti inducirane reaktivnim kisikovim vrstama [61]. Polifenolne komponente, fitokemikalije s pozitivnim učinkom na bolesti povezane sa starenjem, koje sadrže ferocen mogu djelovati na stanice raka. Primjerice, difenolni spoj 1,1-di-(4'-hidroksifenil)-2-ferocenil-but-1-en (Slika 10) pokazuje značajniji antiproliferativni učinak na stanice ER (+) i ER (-) raka dojke u odnosu na 4-hidroksitamoksifen [62]. Osim antikancerogenog učinka, ferocenski derivati posjeduju antifungalna, antiparazitska i antibakterijska svojstva [57]. Tako su razvijeni i ferocenski spojevi s antimalarijskom aktivnosti poput ferokina i ferocenil meflokina [62].

Slika 10. 1,1-di-(4'-hidroksifenil)-2-ferocenil-but-1-en

2.4.2. Ferocenski peptidi

Zahvaljujući svojim elektronskim i elektrokemijskim svojstvima te kemijskoj stabilnosti, ferocenski su polimeri, uključujući i ferocenske peptide, predmet velikog broja istraživanja [63]. Polimeri mogu sadržavati ferocen na glavnom polimerskom lancu ili na pobočnim lancima [54]. Unutar molekule ferocena, razmak između dva ciklopentadienilna prstena iznosi oko 3,3 Å što omogućuje ferocenu izgradnju proteinskih sekundarnih struktura poput β -nabrane ploče te β - i γ -okreta pomoću intramolekulskih vodikovih veza važnih za oblikovanje trodimenzionalne strukture i njihovo djelovanje u biološkim sustavima [64]. Tri su glavne skupine 1,1'-disupstituiranih ferocenskih peptida (Slika 11):

- a. Fn-[CO-(AA)_m-OMe]₂ (I) izvedeni iz ferocen-1,1'-dikarboksilne kiseline (Fcd, IV)
- b. Y-(AA)*n*-Fca-(AA)*m*-OMe (II) izvedeni iz 1'-aminoferocen-1-karboksilne kiseline (Fca, V)
- c. Fn-[NH-(AA)m-Y]2 (III) izvedeni iz ferocen-1,1'-diamina (Fcda, VI) [Fn=ferocenilen, AA = prirodna aminokiselina, Y = Ac (acetil), Boc (*tert*-butoksikarbonil), m = 1, 2,...; n = 1, 2,...] [65].

Slika 11. Ferocenski peptidi I-III izvedeni iz Fcd (IV), Fca (V) i Fcda (VI)

Najveći broj pripravljenih ferocenskih peptida pripada skupini **I** u kojoj je dikarboksilna kiselina s aminokiselinom povezana amidnom vezom [66]. Stvaranje paralelnih β -nabranih

ploča pripisuje se konjugatima izvedenima iz ferocenske dikarboksilne kiseline i ferocenskog diamina, dok konjugate izvedene iz ferocenske aminokiseline karakterizira antiparalelno usmjerenje peptidnih lanaca [65]. Torzijski kut ω (0 – 180°) između dva peptida, kut iskrivljenosti Θ (0 – 5°) između dva ciklopentadienilna prstena i kut izvijenosti β (5 – 30°) između ciklopentadienilnog prstena i amidne veze strukturni su parametri kojima peptidi **I-III** ostvaruju različite konformacije (Slika 12) [67, 68].

Slika 12. Deformacija fleksibilne ferocenske molekule: (a) torzijski kut,(b) kut iskrivljenosti i (c) kut izvijenosti

Ovisno o vrijednosti torzijskog kuta ω , definiraju se 1,n'-rotacijski izomeri (n'=1-5) koje tvore supstituenti na ciklopentadienilnim prstenovima (npr. ako je -36° < ω > 36°, onda se 1, n'-izomer imenuje kao 1, 1'-izomer). Deskriptori helične kiralnosti, *P*- ili *M*-, važni su za naznaku smjera kiralnosti. U *P*-izomerima, supstituent s višim prioritetom smješten je na poziciju 1 "gornjeg" ciklopentadienilnog prstena, dok supstituent s nižim prioritetom zauzima 2' ili 3' poziciju na "donjem" ciklopentadienilnom prstenu što odgovara rotaciji u smjeru kazaljke na satu ($\omega = 0 - 180^\circ$). S druge strane, supstituent na "donjem" prstenu *M*-izomera zauzima 4' ili 5' poziciju što odgovara rotaciji suprotnoj od *P*-izomera ($\omega = 0 - -180^\circ$). Nastajanje enantiomernih i dijastereoizomernih ferocenskih konjugata s aminokiselinama omogućeno je zahvaljujući stereogenom centru aminokiseline vezane za ciklopentadienilni prsten (Slika 13) [65, 69].

Slika 13. Stereokemijski odnosi *M*- i *P*-heličnih ferocenskih konjugata s L- i D-aminokiselinama

Ferocenski konjugati s aminokiselinama često se koriste u pripravi peptidomimetika. Peptidomimetici su peptidni ili nepeptidni spojevi koji posjeduju sekundarnu strukturu analognu prirodnim peptidima pri čemu mogu obavljati njihove biološke funkcije [2, 70-72]. Budući da je primjena prirodnih peptida kao lijekova ograničena njihovim nepoželjnim svojstvima (konformacijska fleksibilnost, niska stabilnost), detaljnja istraživanja i uporaba peptidomimetika usmjerena su u nadilaženju tih prepreka [70, 73].

2.4.2.1. Ferocenski konjugati Fn-[CO-(AA)_m-OMe]₂ (I) izvedeni iz Fcd (IV)

Ferocen-1,1'-dikarboksilna kiselina (Fcd, **IV**) aktivira se pretvorbom u sukcinimidni ili benzotriazolni ester (kiselinski klorid) te kopulira s *N*-terminalnim dijelom *C*-zaštićenih prirodnih aminokiselina pri čemu nastaju ferocenski konjugati **I**. Derivati **I** mogu zauzimati različite konformacije, a tri glavne skupine uključuju "Herrickovu", "van Staverenovu" i "Xuovu" konformaciju (Slika 14) [65].

b)

c)

a)

Slika 14. "Herrickova" konformacija (a), "Van Staverenova" konformacija (b) i "Xuova" konformacija (c)

Hirao i suradnici istraživali su utjecaj konfiguracije i slijeda prirodnih aminokiselina na konformacijski prostor peptida I dobivenih kopulacijom Fcd (IV) s homo- i heterokiralnim sekvencama Ala-Pro/Pro-Ala. "Herrickova" konformacija peptidnim utvrđena je kristalografskom analizom konjugata Fn-(CO-L-Ala-L-Pro-OEt)2 (VII) pri čemu obje alaninske podjedinice sudjeluju u dvjema interlančanim NHAla...OCAla intramolekulskim vodikovim vezama [74, 75]. Pozitivan Cottonov efekt u ferocenskom području utvrđen je CDspektroskopskom analizom VII koji upućuje na P-heličnost ferocena, dok Fn-(CO-D-Ala-L-Pro-OEt)₂ (VIII) pokazuje negativan Cottonov efekt što se pripisuje *M*-heličnosti ferocena [76, 77]. Peptidi VII i VIII predstavljaju konformacijske enantiomere pri čemu prvi tvori desno, a drugi lijevo usmjerenu uzvojnicu (Slika 15).

Fn-(CO-Ala-Pro-OEt)₂ (VII)

Fn-(CO-D-Ala-D-Pro-OEt)2 (VIII)

Slika 15. ORTEP-dijagrami (*gore*) i CD-spektri (*dolje*) konformacijskih enantiomera Fn-(CO-Ala-Pro-OEt)₂ (VII) i Fn-(CO-D-Ala-D-Pro-OEt)₂ (VIII)

Adhikari i suradnici su pripravom konjugata Fn-(CO-Trp-OMe)₂ (**IX**) i Fn-(CO-Thr-OMe)₂ (**X**) nastavili istraživati ferocenske peptide **I**. Kristalografskom analizom peptida **IX** utvrđena je prisutnost dvaju interlančanih NH_{Trp}···OC_{Trp} intramolekulskih vodikovih veza koje tvore 10-člani IHB-prsten što odgovara β -okretu (Slika 16). Analizom kristalne strukture peptida **X** utvrđen je nedostatak intramolekulskih vodikovih veza, što upućuje na konformaciju definiranu kao antikonformacija (Slika 16), dok u otopini istoimeni peptid zauzima "Herrickovu" konformaciju. Pozitivan Cottonov efekt u ferocenskom području utvrđen je CD-spektroskopskom analizom Fn-(CO-L-Trp-OMe)₂ **IXa** što se pripisuje *P*-heličnosti, dok Fn-(CO-D-Trp-OMe)₂ **IXb** pokazuje efekt suprotnog predznaka što ukazuje na *M*-heličnost ferocena [78].

b)

c)

a)

Slika 16. ORTEP dijagrami Fn-(CO-Trp-OMe)₂ (**IX**, **a**) i Fn-(CO-Thr-OMe)₂ (**X**, **b**) te antikonformacija (**c**)

2.4.2.2. Ferocenski konjugati Y-(AA)n-Fca-(AA)m-OMe (II) izvedeni iz Fca (V)

1'-aminoferocen-1-karboksilna kiselina (Fca, **V**) prva je i najjednostavnija bioorganometalna aminokiselina koja se, kopulacijom s *C*- i *N*- terminusom prirodnih aminokiselina, može ugraditi u peptide, a ujedno osigurava antiparalelnu orijentaciju peptidnih lanaca [79, 80]. Ferocenski peptidi dobiveni ugradnjom Fca u alaninske di-, tri-, tetra-, penta- i oktapeptide u otopini i čvrstom stanju pripravljeni su u Laboratoriju za organsku kemiju [80-91].

Konjugati Boc-Fca-L-Ala (**XIa**) i Boc-Fca-D-Ala (**XIb**) dobiveni su kopulacijom aktivirane Boc-Fca-OH s H-L-Ala-OMe i H-D-Ala-OMe. Iz kristalne strukture pripravljenih derivata vidljiva je prisutnost vodikovih veza između NH_{Ala}···OC_{Boc} koje rezultiraju 8-članim IHB-prstenovima s heličnom kiralnosti: *P*-heličnost za **XIa** i *M*-heličnost za **XIb** (Slika 17) [82].

Slika 17. Shematski prikaz i ORTEP-dijagrami enantiomernih dipeptidâ *M*-Boc-Fca-L-Ala-OMe (**XIa**, *lijevo*) i *P*-Boc-Fca-D-Ala-OMe (**XIb**, *desno*)

Pomoću IR-, ¹H-NMR- i CD- spektroskopskih analiza te DFT-analize utvrđena su dva tipa konformerâ (**A** i **B**) ferocenskih peptida **XIa** i **XIb** u otopini neovisno o apsolutnoj konfiguraciji alaninske podjedinice (Slika 18). U konformerima **A** utvrđene su interlančane NH_{Fca}...OC_{Ala} intramolekulske vodikove veze koje tvore 9-člani prsten, dok interakcijom NH_{Ala}...OC_{Boc} u konformerima **B** tipa nastaje 8-člani prsten pri čemu interlančane vodikove veze omogućuju tvorbu heličnih konformera.

Slika 18. Hipotetske konformacije XIa i XIb u otopini

Barišić i suradnici nastavili su istraživanje ferocenskih peptida **II** pripravom konjugata Y-Fca-Pro-OMe **XIIa,b** (**XIIa**, Y=Ac; **XIIb**, Y=Boc) i Y-Pro-Fca-OMe **XIIIa,b** (**XIIIa**, Y=Boc; **XIIIb**, Y=Ac) kako bi utvrdili utjecaj prolina na njihova konformacijska svojstva [21]. Ferocenske konjugate **XIIa** i **XIIb** stabiliziraju interlančane NH_{Fca}...OC_{Pro} intramolekulske vodikove veze tvoreći 9-člani IHB-prsten, dok peptidi **XIIIa** i **XIIIb** tvore 7-člani prsten što odgovara γ-okretu (Slika 19).

Slika 19. Intramolekulske vodikove veze u peptidima XIIa (Ac-Fca-Pro-OMe), XIIb (Boc-Fca-Pro-OMe), XIIIa (Boc-Pro-Fca-OMe) i XIIIb (Ac-Pro-Fca-OMe)

Kristalografskom analizom konjugata **XIIIa** utvrđena je konformacija stabilizirana jednom N-H···O i četiri slabe C-H···O intramolekulske vodikove veze, a dodatnu stabilizaciju osigurava interlančana dipolarna interakcija između CO-skupine jednog i NH-skupine drugog ciklopentadienilnog prstena (Slika 20).

Slika 20. Konformacija peptida Boc-Pro-Fca-OMe (XIIIa) u kristalu

2.4.2.3. Ferocenski konjugati Fn-[NH-(AA)m-Y]2 (III) izvedeni iz Fcda (VI)

Ferocenski konjugati izvedeni iz ferocen-1,1'-diamina (Fcda,**VI**) slabo su istraženi, a prve takve konjugate sintetizirali su Kratz i suradnici kopulacijom Fcda (**VI**) s L- i D-Ala [92]. Dobiveni konjugati Fn-(NH-Ala-Boc)₂ (**XIVa**) i Fn-(NH-D-Ala-Boc)₂ (**XIVb**) u čvrstom stanju tvore dva 10-člana IHB-prstena koji su rezultat interlančanih NH_{Fn}···OC_{Boc} vodikovih veza što odgovara strukturi β -okreta (Slika 21). CD-spektroskopskom analizom utvrđena je helična kiralnost istoimenih peptida u otopini: **XIVa** poprima pozitivan Cottonov efekt u ferocenskom području što upućuje na *P*-heličnost, dok **XIVb** poprima efekt suprotnog predznaka što odgovara *M*-heličnosti ferocena.

Slika 21. Shematski prikaz IHB i ORTEP-dijagrami enantiomernih dipeptidâ Fn-(NH-Ala-Boc)₂ (**XIVa**, *lijevo*) i Fn-(NH-D-Ala-Boc)₂ (**XIVb**, *desno*)

U Laboratoriju za organsku kemiju pripravljeni su asimetrični konjugati Boc-AA-NH-Fn-NH-Ac (**XVa-d**, AA = L-Ala, D-Ala, Val, Gly) "desimetrizacijom" ferocenskih peptida **III** [93]. U otopini konjugati **XVa-d** zauzimaju više različitih konformacija temeljenih na intramolekulskim vodikovim vezama [82, 94] pri čemu bočni ogranak prirodne aminokiseline nema utjecaja na IHB u kojima sudjeluju na ferocen izravno vezane NH-skupine (Slika 22). Očekivano, pozitivan Cottonov efekt u ferocenskom području poprima **XVb** što implicira na *P*-heličnost ferocena, dok se kod **XVc** javlja efekt suprotnog predznaka što ukazuje na *M*heličnost ferocenske jezgre.

Slika 22. Hipotetske konformacije A-D peptida Boc-AA-NH-Fn-NH-Ac (XVa-d) u otopini

Barišić i suradnici sintetizirali su konjugate Ac–Ala–NH–Fn–NH–Ala–Boc (**XVIa**) i Fn–(NH–Ala–Ac)₂ (**XVIb**) čijom su konformacijskom analizom, u otopini i čvrstom stanju, utvrdili prisutnost dvaju simultanih 10-članih struktura nalik β -okretu između dva supstituenta neovisno o Boc ili Ac zaštitnim skupinama. U čvrstom stanju strukturu dodatno stabiliziraju unakrsne intermolekulske vodikove veze (Slika 23) [95, 96].

Slika 23. Molekulska struktura XVIa (IHB su prikazane isprekidanim crtama)

Daljnje istraživanje ferocenskih peptida **III** nastavili su Barišić i suradnici pripravom homo- i heterokiralnih ferocenskih peptida **XVIIa-h** s Ala-Pro sekvencama [97]. Konformacijskom analizom peptida Ac-L-Ala-L-Pro-NH-Fn-NH-L-Pro-L-Ala-Ac (**XVIIc**) utvrđena je prisutnost dvaju interlančanih NHFn···OCAc intramolekulskih vodikovih veza koje tvore 13-člane prstenove (Slika 24, obrazac **B**). U peptidima Ac-L-Ala-L-Pro-NH-Fn-NH-L-Pro-L-Ala-Boc (**XVIIa**) i Boc-L-Ala-L-Pro-NH-Fn-NH-L-Pro-L-Ala-Boc (**XVIIh**) uočena je tvorba jednog 13-članog prstena, dok je drugi 10-člani prsten stabiliziran interlančanim NHFn···OCAla intramolekulskim vodikovim vezama (Slika 24, obrazac **A**). Zamjenom L-Ala s D-Ala u heterokiralnim peptidima Ac-D-Ala-L-Pro-NH-Fn-NH-L-Pro-D-Ala-Boc (**XVIIb**) i Ac-D-Ala-L-Pro-NH-Fn-NH-L-Pro-D-Ala-Ac (**XVIId**) dolazi do gubitka strukture 13-članog prstena čije mjesto zauzimaju 7-člane intralančane i 16-člane interlančane intramolekulske vodikove veze (Slika 24, obrazac **C**).

Slika 24. Obrazac IHB u homokiralnim peptidima XVIIa, XVIIc i XVIIh (obrasci A i B) i heterokiralnim peptidima XVIIb i XVIId (obrazac C); XVIIa i XVIIb (R1 = Me, R2 = OtBu), XVIIc i XVIId (R1 = R2 = Me), XVIIh (R1 = R2 = OtBu).

2.5. TEORIJA FUNKCIONALA GUSTOĆE (DFT, eng. Density Functional Theory)

Računalna kemija ima sve važniju ulogu u proučavanju brojnih kemijskih fenomena i složenih sustava. Razvoj DFT-a omogućio je njegovu primjenu u razumijevanju i razvoju katalitičkih procesa u enzimima i zeolitima, transportu elektrona, prikupljanju i pretvaranju solarne energije, razvoju lijekova i drugim značajnim područjima znanosti i tehnologije [98].

Kvantno-mehaničke metode temelje se na rješavanju Schrödingerove jednadžbe koja opisuje dinamička svojstva čestica u sustavu čija rješenja uključuju kompleksne valne funkcije definirane točkama u konformacijskom prostoru [99]. Iako su Tomas i Fermi, potaknuti Schrödingerovim istraživanjima, već 1927. bili na tragu razvitka teorije, začetkom moderne teorije funkcionala gustoće smatra se 1964. godina kada su Hohenberg i Kohn ustanovili da ukupna elektronska gustoća ρ točno određuje sva svojstva N-elektronskog sustava pri čemu ρ predstavlja fundamentalnu varijablu u teoriji elektronske strukture [100]. Na taj se način Schrödingerova jednadžba rješava na temelju elektronske gustoće umjesto na temelju više valnih funkcija [101].

Teorija funkcionala gustoće opisana je dvama temeljnim Hohenberg-Kohnovim teoremima. Prvi se odnosi na funkcional elektronske gustoće koji određuje energiju osnovnog stanja bilo kojeg elektronskog sustava. Dakle, izračunom elektronske gustoće ρ u trodimenzionalnom prostoru određuju se svojstva osnovnog stanja elektronskog sustava, uključujući i energiju [102]. Drugi teorem odnosi se na princip varijacije za funkcional gustoće nalik prethodno navedenom principu [103]. Kohn-Shamove jednadžbe (KS-LCAO) riješile su problem koji predstavljaju Hohenberg-Kohnovi teoremi, budući da oni ne opisuju potencijalnu prirodu ili oblik funkcionala gustoće te načine njegova određivanja.

U istraživanju struktura ferocenskih peptida vrlo se često koriste računi vezani uz teoriju funkcionala gustoće (DFT) s ciljem određivanja relativne stabilnosti optimiziranih konformera na geometrijama koje sadrže različite funkcijske skupine. DFT računi pokazali su se iznimno važnima u objašnjavanju konformacija ferocenskih konjugata koji tvore IHB u otopini. Metoda je validirana eksperimentalnim metodama poput IR-, NMR- ili CD-spektroskopije [104].

3. EKSPERIMENTALNI DIO

3.1. MATERIJALI I METODE

Kemikalije korištene u sintezi bile su analitičke čistoće, dok su otapala korištena u radu pročišćena prema standardnim postupcima [105]. Tijek reakcija i kontrola čistoće sintetiziranih spojeva ispitivani su tankoslojnom kromatografijom (TLC) na pločicama silikagela (Fluka Silica Gel) s fluoroscentnim indikatorom (254 nm). Detekcija neferocenskih spojeva provedena je korištenjem UV-svjetlosti valne duljine 254 nm i ninhidrinom uz zagrijavanje. Produkti su pročišćeni tankoslojnom preparativnom kromatografijom na silikagelu ("Merck", Kiselgel 60 HF₂₅₄) uporabom smjesâ diklormetan/etil-acetat kao eluensâ.

Karakterizacija sintetiziranih spojeva provedena je pomoću infracrvene spektroskopije (IR), nuklearne magnetske rezonance (NMR) i tekućinske kromatografije visoke razlučivosti sa spektrometrijom masa (HPLC-MS). Tališta su određena na Reichert Thermovar HT 1 BT 11 i nisu korigirana.

IR-spektri uzoraka snimljeni su na spektrofotometru PerkinElmer Spectrum Two u CH₂Cl₂.

¹H- i ¹³C-NMR-spektri određeni su u CDCl₃ na spektrometru Bruker AV600 uz tetrametilsilan kao unutrašnji standard. Kemijski pomaci (δ) izraženi su u ppm.

UV/Vis- i CD-spektri snimljeni su na CD-spektrofotometru Jasco-810 u CH₂Cl₂ i DMSO.

Maseni spektri izmjereni su na Agilent Technologies 6410 Triple Quadrupole Mass Spectrometer (ESI ionizacija).

DFT-računi načinjeni su pomoću programa Gaussian 09/DFT (B3LYP, MO6 i MO6-2X).

Sinteza Boc-Fca (V) [79] opisana je u literaturi te njezini spektroskopski podaci odgovaraju literaturnima.

Shema 2.

3.2. POSTUPAK PRIPRAVE FEROCENSKIH PEPTIDA

3.2.1. Postupak priprave dipeptida 1

Boc-zaštićena ferocenska aminokiselina Fca V (1 g, 2,8 mmol) otopi se u diklormetanu, ohladi na 0 °C i izloži djelovanju plinovitog HCl. Nakon 30' miješanja u ledenoj kupelji te otparavanja na rotacijskom vakuum-uparivaču nastali se hidroklorid suspendira u CH₂Cl₂ i obradi sa suviškom Et₃N (pH~9). Dobiveni se slobodni amin kopulira s Boc-D-Pro-OH (1,18 g, 5,5 mmol) primjenom standardnog EDC/HOBt postupka. Nakon 1 sat miješanja pri sobnoj temperaturi rezultirajuća se reakcijska smjesa ispere zasićenom vodenom otopinom NaHCO₃, 10%-tnom otopinom limunske kiseline i zasićenom otopinom NaCl. Organski se sloj osuši bezvodnim Na₂SO₄ i upari do suha. Sirovi produkt pročišćava se tankoslojnom preparativnom kromatografijom na silikagelu uz CH₂Cl₂ : EtOAc = 5 : 1 kao eluens.

Boc-D-Pro-Fca-OMe (1)

 $t_{\rm t} = 128-132$ °C; $R_{\rm f} = 0.33$ (CH₂Cl₂ : EtOAc = 5 : 1).

IR (CH₂Cl₂) v_{max}/cm^{-1} : 3419 sr, 3405 sr (NH_{slobodni}), 3290 sr, 3234 sl (NH_{asocirani}), 1706 j (C=O_{COOMe}), 1694 j (C=O_{Boc}), 1655 j (C=O_{CONH}), 1561 j (amid II).

¹H NMR* (600 MHz, CDCl₃) δ/ppm: 8,78 (s, 0,66H, _{NH trans}); 7,52 (s, 0,33H, NH_{cis}); 4,78 (s, 0,66H, CH_{Fn trans}); 4,77 (s, 0,66H, CH_{Fn trans}); 4,74 (s, 0,66H, CH_{Fn trans}); 4,71-4,69 (m, 0,66H, CH_{Fn trans}); 4,64 (s, 0,33H, CH_{Fn cis}); 4,49 (s, 0,34H, CH_{Fn cis}); 4,47 (s, 0,65H, CH_{Fn trans}); 4,43 (s, 0,34H, CH_{Fn cis}); 4,40 (s, 0,34H, CH_{Fn cis}); 4,38 (s, 0,7H, CH_{Fn trans}); 4,37 (s, 0,33H, CH_{Fn cis}); 4,36 (s, 1,03H, CH_{Fn cis} + CH_αPro trans); 4,27 (dd, 0,34H, J = 3,4 Hz, J = 8,7 Hz, CH_αPro trans); 4,11-4,09 (s, 0,68H, CH_{Fn cis}); 4,00 (brs, 1,35H, CH_{Fn trans}); 3,80 (s, 0,96 H, CH_{3COOMe trans}); 3,78 (s, 2,06 H, CH_{3COOMe cis}); 3,64-3,61 (m, 0,36H, CH_δPro cis); 3,53-3,50 (m, 0,36H, CH_δPro cis); 3,46-3,43 (m, 0,7H, CH_δPro trans}); 2,26-2,24 (m, 0,3H, CH_βPro trans); 2,47 (šj, 0,3H, CH_βPro cis); 2,42-2,40 (m, 0,7H, CH_βPro trans); 2,26-2,24 (m, 0,3H, CH_βPro cis); 1,96-1,91 (m, 2H, CH_γPro); 1,89-1,85 (m, 0,72H, CH_βPro); 1,49 (s, 6H, CH_{3Boc trans}); 1,45 (s, 3H, CH_{3Boc cis}).

¹³C NMR*, APT (75 MHz, CDCl₃) δ/ppm: 172,39 (CO_{COOMe cis}); 172,21 (CO_{COOMe trans}); 171,52 (CO_{CO-NH cis}); 170,24 (CO_{CO-NH trans}); 156,34 (CO_{Boc trans}); 155,06 (CO_{Boc cis}); 95,30 (C_{qFn} *trans*); 93,94 (C_{qFn cis}); 81,19 (C_{qFn}); 80,91 (C_{qBoc trans}); 73,04; 71,10; 70,69; 66,54; 66,33; 62,54; 62,40; (CH_{Fn trans}); 72,74; 71,44; 70,95; 66,84; 66,82; 63,77; 62,98 (CH_{Fn cis}); 72,90 (CH_{Fn}); 61,59 (CH_{αPro cis}); 59,83 (CH_{αPro trans}); 52,25 (CH_{3COOMe cis}); 52,08 (CH_{3COOMe trans}); 47,17 (CH_{2δPro}); 31,21 (CH_{2βPro cis}); 28,33 (CH_{3Boc}); 27,21 (CH_{2βPro trans}); 24,71 (CH_{2γPro trans}); 23,77 (CH_{2γPro cis}).
*Zbog slabog razdvajanja signala pri sobnoj temperaturi, NMR-spektri snimljeni su pri 228 K. HRMS analiza za C₂₂H₂₈N₂O₅Fe (456,1342) nađeno: 456,132.

3.2.2. Postupak priprave tripeptida 2 i 3

Boc-zaštićen dipeptid 1 (800 mg, 1,75 mmol) otopi se u diklormetanu te se ohlađen na 0 °C izloži djelovanju plinovitog HCl. Nakon 30' miješanja u ledenoj kupelji te otparavanja na rotacijskom vakuum-uparivaču nastali se hidroklorid suspendira u CH₂Cl₂ i obradi sa suviškom Et₃N (pH~9). Dobiveni se slobodni amin kopulira s Boc-L-Ala-OH (662 mg, 3,5 mmol) i Boc-D-Ala-OH (662 mg, 3,5 mmol) primjenom standardnog EDC/HOBt postupka. Nakon 1 sat miješanja pri sobnoj temperaturi rezultirajuća se reakcijska smjesa ispere zasićenom vođenom otopinom NaHCO₃, 10%-tnom otopinom limunske kiseline i zasićenom otopinom NaCl. Organski se sloj osuši bezvodnim Na₂SO₄ i upari do suha. Sirovi produkt pročišćava se tankoslojnom preparativnom kromatografijom na silikagelu uz CH₂Cl₂ : EtOAc = 5 : 1 kao eluens.

Boc-L-Ala-D-Pro-Fca-OMe (2)

 $R_{\rm f} = 0,61$ (EtOAc).

IR (CH₂Cl₂) v_{max}/cm⁻¹: 3432 j (NH_{slobodni}), 3345 sr (NH_{asocirani}), 1708 j (C=O_{COOMe}), 1659 j, 1629 j (C=O_{CONH}), 1561 j, 1544 j, 1499 j (amid II).

¹H-NMR (600 MHz, CDCl₃) δ/ppm: 8,40 (s, 1H, NH_{Fca}); 5,50 (d, J = 6,60 Hz, 1H, NH_{Ala}); 4,73 (s, 1H, H-10); 4,70 (s, 1H, H-7), 4,65-4,63 [m, 3H, CH-α (Pro), H-3, H-4]; 4,48-4,46 [m, 1H, CH_{Ala}), 4,37 (pt, 2H, H-8, H-9); 4,00 (pt, 1H, H-2, H-5); 3,86 [pt, 1H, CH₂-δ (Pro)]; 3,80 (s, 3 H, COOMe); 3,51 [q, 1H, J = 7,69 Hz, J = 9,14 Hz, CH₂-δ' (Pro)]; 2,51-2,48 [m, 1H, CH₂-β (Pro)]; 2,17-,16 [m, 1H, CH₂-γ (Pro)]; 2,05-2,03 [m, 1H, CH₂-γ' (Pro)]; 1,93 [pt, 1 H, CH₂-β' (Pro)]; 1,93-1,91 [m, 1H, CH₂-β' (Pro)]; 1,39 [s, 9 H, (CH₃)_{3-Boc}]; 1,35 (d, J = 6,86 Hz, 3 H, CH_{3-Ala}).

¹³C-NMR (150 MHz, CDCl₃) δ/ppm: 173,22 (CO_{Ala}); 172,01 (CO_{COOMe}); 169,17 (CO_{Fca}); 155,59 (CO_{Boc}); 95,66 (C-1, Fn); 80,04 (C_{qBoc}); 72,73 (C-8); 72,64 (C-9); 71,81 (C-6); 71,38 (C-10); 71,34 (C-7); 66,40 (C-3); 66,13 (C-4); 63,28 (C-5); 63,18 (C-2); 60,86 (C- α , Pro); 51,74 (CH_{3-COOMe}); 48,42 (CH_{Ala}); 47,29 (CH₂- δ , Pro); 28,56 [(CH₃)_{3-Boc}]; 27,71 (CH₂- β , Pro); 24,88 (CH₂- γ , Pro); 17,74 (CH_{3-Ala}).

ESI-MS: izračunato za C₂₅H₃₃N₃O₆Fe: 527,4; dobiveno $[M]^+$ na *m/z* 527,3.

Boc-D-Ala-D-Pro-Fca-OMe (3)

 $t_{\rm t} = 184 \,^{\circ}\text{C}; R_{\rm f} = 0,78 \,(\text{EtOAc}).$

IR (CH₂Cl₂) v_{max}/cm⁻¹: 3431 j (NH_{slobodni}), 3303 sr (NH_{asocirani}), 1707 j (C=O_{COOMe}), 1657 j, 1634 j (C=O_{CONH}), 1555 j, 1549 j, 1498 j (amid II).

¹H-NMR (600 MHz, CDCl₃) δ/ppm: 8,83 (s, 0,14H, NH_{Fca} *cis*); 8,47 (s, 0,86H, NH_{Fca} *trans*); 5,35 (d, J = 7,39 Hz, 0,86H, NH_{Ala} *trans*); 5,11 (d, J = 7,39 Hz, 0,14H, NH_{Ala} *cis*); 4,90 (s, 0,14H, H-10*cis*); 4,86 (s, 0,14H, H-7*cis*); 4,74 (s, 0,86H, H-10*trans*); 4,71 (s, 0,86H, H-7*trans*); 4,66 [s, 0,34H, CH-α(Pro)*cis*, H-3*cis*]; 4,65 [s, 1,66H, CH-α(Pro)*trans*, H-3*trans*]; 4,51 [m, 1,62H, CH_{Ala} *trans*, H-4*trans*]; 4,49 (m, 0,22H, CH_{Ala} *cis*); 4,42-4,41 (m, 0,16H, H-4*cis*); 4,35 (s, 0,86H, H-8*trans*); 4,33 (s, 0,86H, H-9*trans*); 4,04 (s, 0,28H, H-2*cis*, H-5*cis*); 3,99 (s, 1H, H-2*trans*); 3,98 (s, 1H, H-5*trans*); 3,79 (s, 2,54H, COOMe*trans*); 3,76 (s, 0,46H, COOMe*cis*); 3,69-3,66 [m, 0,86H, CH₂- γ ' (Pro)*trans*]; 3,60 [td, 0,86H, CH₂- γ (Pro)*trans*]; 3,36 [m, 0,14H, CH₂- γ ' (Pro)*cis*]; 2,72-2,68 [m, 0,56H, CH₂- β (Pro)*cis*, CH₂- δ (Pro)*trans*]; 2,06-2,02 [m, 0,86H, CH₂- β ' (Pro)*trans*]; 1,93-1,91 [m, 0,86H, CH₂- β ' (Pro)*trans*]; 1,51 [s, 1,64H, (CH₃)_{3-Boc} *trans*]; 1,38 (d, J = 6,74 Hz, 2,4H, CH_{3-Ala} *trans*); 1,32 (d, J = 6,74 Hz, 0,6H, CH_{3-Ala} *cis*).

¹³C-NMR (150 MHz, CDCl₃) δ/ ppm: 173,86 (CO_{Ala trans}); 172,75 (CO_{Ala cis}); 171,68 (CO_{COOMe trans}); 169,13 (CO_{Fca trans}); 168,90 (CO_{Fca cis}); 156,68 (CO_{Boc cis}); 155,34 (CO_{Boc trans}); 96,22 (C-1,Fn_{cis}); 95,66 (C-1,Fn_{trans}); 80,57 (C_{qBoc cis}); 79,99 (C_{qBoc trans}); 72,65 (C-8_{trans}); 72,60 (C-9_{trans}); 72,43 (C-8_{cis}); 72,33 (C-9_{cis}); 72,12 (C-6_{trans}); 71,99 (C-6_{cis}); 71,30 (C-10_{trans}); 71,24 (C-10_{cis}); 71,13 (C-7_{trans}); 70,93 (C-7_{cis}); 66,49 (C-3_{trans}); 66,34 (C-4_{trans}); 65,86 (C-3_{cis}, C-4_{cis}); 63,37 (C-2_{cis}, C-5_{cis}); 63,02 (C-5_{trans}); 62,81 (C-2_{trans}); 61,42 (C-α, Pro_{cis}); 60,48 (C-α, Pro_{trans}); 51,73 [CH_{3COOMe trans}]; 49,06 (CH_{Ala cis}); 47,99 (CH_{Ala trans}); 47,50 (CH₂-δ, Pro_{trans}); 46,76 (CH₂-δ, Pro_{cis}); 31,25 (CH₂-β, Pro_{cis}); 28,62 [(CH₃)_{3-Boc cis}]; 28,51 [(CH₃)_{3-Boc trans}]; 26,75(CH₂-β, Pro_{trans}); 25,34 (CH₂-γ, Pro_{trans}); 22,27 (CH₂-γ, Pro_{cis}); 18,63 (CH_{3Ala trans}). ESI-MS: izračunato za C₂₅H₃₃N₃O₆Fe: 527,4; dobiveno [M]⁺ na *m*/z 527,3.

3.2.3. Postupak priprave tripeptida 4 i 5

U suspenziju Boc-peptida 2 (800 mg, 1,52 mmol), odnosno 3 (800 mg, 1,52 mmol), u EtOAc ohlađenu na 0 °C uvodi se plinoviti HCl. Nakon 20 minuta miješanja u ledenoj kupelji otapalo se upari, a rezultirajući hidroklorid peptida 2, odn. 3 suspendira u suhom diklormetanu

(8 ml) i otopi uz dodatak Et₃N (1,67 mL, 12,1 mmol). Nastaloj se otopini, ohlađenoj na 0 °C, uz miješanje oprezno dokapa acetil-klorid (649 μL, 9,12 mmol). Nakon 15 min. miješanja pri 0 °C, reakcijska se smjesa izlije u vodu i više puta ekstrahira diklormetanom. Organski se sloj ispere zasićenom vodenom otopinom NaCl, osuši bezvodnim Na₂SO₄ i upari do suha. Sirovi produkt pročišćava se tankoslojnom preparativnom kromatografijom na silikagelu uz EtOAc kao eluensâ.

Ac-L-Ala-D-Pro-Fca-OMe (4)

 $R_{\rm f} = 0.61 \text{ (}n\text{-BuOH : CH}_3\text{COOH : H}_2\text{O} = 60 : 25 : 15\text{)}.$

IR (CH₂Cl₂) v_{max}/cm⁻¹: 3438 j (NH_{slobodni}), 3322 j (NH_{asocirani}), 1707 j (C=O_{COOMe}), 1669, 1659 (C=O_{CONH}), 1548, 1510 (amid II).

¹H-NMR (600 MHz, CDCl₃) δ/ppm: 8,33 (s, 1H, NH_{Fca}); 6,79 (d, J = 5,4 Hz, 1H, NH_{Ala}); 4,75 (s, 1H, H-2); 4,71 (s, 1H, H-5), 4,67-4,64 (m, 3H, CH_{Ala}, H-7, H-10); 4,60 [m, 1H, CH-α (Pro)]; 4,41 (s, 1H, H-8); 4,37 (s, 1H, H-9); 4,00 (s, 1H, H-3); 3,99 (s, 1H, H-5); 3,92 [pt, 1H, CH₂-δ (Pro)]; 3,78 (s, 3H, COOMe); 3,51 [q, 1 H, J = 3,5 Hz, J = 3,5 Hz, CH₂-δ' (Pro)]; 2,42-2,41 [m, 1H, CH₂-β (Pro)]; 2,14-2,12 [m, 1H, CH₂-γ (Pro)]; 2,05-2,03 [m, 2H, CH₂-γ' (Pro), CH₂-β' (Pro)]; 1,93-1,91 [m, 1H, CH₂-β' (Pro)]; 2,01 (s, 3H, CH₃-Ac); 1,37 (d, J = 6,8 Hz, 3H, CH_{3-Ala}).

¹³C-NMR (150 MHz, CDCl₃) δ/ppm: 172,62 (CO_{Ala}); 172,37 (CO_{COOMe}); 170,76 (CO_{Ac}); 169,32 (CO_{Fca}); 95,93 (C-1, Fn); 72,94 (C-8); 72,79 (C-9); 71,58 (C-6); 71,39 (C-10); 71,18 (C-7); 66,43 (C-3); 66,22 (C-4); 63,08 (C-5); 63,03 (C-2); 61,08 (C- α , Pro); 51,76 (CH_{3-COOMe}); 47,69 (CH_{Ala}); 47,39 (CH₂- δ , Pro); 28,39 (CH₂- β , Pro); 24,71 (CH₂- γ , Pro); 23,00 (CH_{3-Ac}); 16,90 (CH_{3-Ala}).

ESI-MS: izračunato za $C_{22}H_{27}N_3O_5Fe$: 469,3; dobiveno [M] ⁺ na *m/z* 469,3.

Ac-D-Ala-D-Pro-Fca-OMe (5)

 $t_{\rm t} = 57 \,^{\circ}\text{C}; R_{\rm f} = 0,65 \,(n-\text{BuOH}:\text{CH}_3\text{COOH}:\text{H}_2\text{O} = 60:25:15).$

IR (CH₂Cl₂) v_{max}/cm⁻¹: 3422 j (NH_{slobodni}), 3289 sr (NH_{asocirani}), 1708 j (C=O_{COOMe}), 1674, 1638 (C=O_{CONH}), 1555, 1539, 1510 (amid II).

¹H-NMR (600 MHz, CDCl₃) δ /ppm: 9,11 (s, 0,14H, NH_{Fca *cis*}); 8,43 (s, 0,86H, NH_{Fca *trans*}); 6,51 (d, *J* = 7,2 Hz, 0,86H, NH_{Ala *trans*}); 6,27 (d, *J* = 5,1 Hz, 0,14H, NH_{Ala *cis*}); 4,78 (dq, *J* = 7,6 Hz, 7,1 Hz, 1H, CH_{Ala}); 4,74 (pt, 1H, H-10); 4,70 (pt, 1H, H-7); 4,66 (pt, 1H, H-3); 4,61 [dd, *J* = 8,2 Hz, 3,0 Hz, 1 H, CH- α (Pro)]; 4,47 [pt, 1H, H-4], 4,37 (pt, 1H, H-8); 4,34 (pt, 1H, H-9); 4,04 (pt, 0,14H, H-2_{cis}, H-5_{*cis*}); 3,99 (pt, 1,86H, H-2_{*trans*}, H-5_{*trans*}); 3,78 (s, 2,6H, H-2); 4,04 (pt, 0,14H, H-2_{cis}, H-5_{*cis*}); 3,99 (pt, 1,86H, H-2_{*trans*}); 3,78 (s, 2,6H, H-2); 4,04 (pt, 0,14H, H-2); 4,0

COOMe_{*trans*}); 3,76 (s, 0,4H, COOMe_{*cis*}); 3,72-3,70 [m, 1H, CH₂- δ' (Pro)]; 3,62 [td, 1H, CH₂- δ (Pro)]; 2,42 [m, 1H, CH₂- γ (Pro)]; 2,23-2,18 [m, 1H, CH₂- γ' (Pro)]; 2,04-2,01 [m, 1H, CH₂- β' (Pro)]; 2,06 (s, 0,4H, CH_{3-Ac cis}); 2,00 (s, 2,6H, CH_{3-Ac trans}); 1,97-1,93 [m, 1H, CH₂- β (Pro)]; 1,41 (d, *J* = 6,8 Hz, 2,45H, CH_{3-Ala trans}); 1,36 (d, *J* = 6,9 Hz, 0,55H, CH_{3-Ala cis}).

¹³C-NMR (150 MHz, CDCl₃) δ/ppm: 173,28 (CO_{Ala trans}); 172,02 (CO_{Ala cis}); 171,91 (CO_{COOMe cis}); 171,81 (CO_{COOMe trans}); 171,22 (CO_{Fca cis}); 169,68 (CO_{Fca trans}); 169,22 (CO_{Ac trans}); 168,86 (CO_{Ac cis}); 96,19 (C-1_{cis}); 95,60 (C-1_{trans}); 72,65 (C-8); 72,56 (C-9); 72,10 (C-6); 71,41 (C-10); 71,13 (C-7); 66,58 (C-2_{cis}); 66,45 (C-2_{trans}); 66,38 (C-5_{trans}); 65,99 (C-5_{cis}); 63,52 (C-3_{cis}); 63,24 (C-4_{cis}); 63,14 (C-3_{trans}); 62,84 (C-4_{trans}); 61,49 (C- α , Pro_{cis}); 60,56 (C- α , Pro_{trans}); 51,74 (CH₃-COOMe cis); 47,62 (CH₂- δ , Pro); 46,84 (CH_{Ala}); 31,43 (CH₂- β , Pro_{cis}); 27,24 (CH₂- β , Pro_{trans}); 25,28 (CH₂- γ , Pro_{trans}); 23,27 (CH₃-Ac trans); 22,84 (CH₂- γ , Pro_{cis}); 22,27 (CH₃-Ac cis); 18,40 (CH₃-Ala trans); 16,46 (CH₃-Ala cis).

ESI-MS: izračunato za $C_{22}H_{27}N_3O_5Fe$: 469,3; dobiveno [M+H]⁺ na *m/z* 470,3.

3.2.4. Postupak priprave Ac-L-Ala-D-Pro-Fca-OH (6) i Ac-D-Ala-D-Pro-Fca-OH (7)

U otopinu estera **4** (800 mg, 1,7 mmol), odnosno **5** (800 mg, 1,7 mmol) u 7 mL metanola doda se 100 mg NaOH (1,7 mmol) i par kapi vode. Nakon 1 sat refluksiranja pri temperaturi od 65 °C, reakcijska se smjesa upari, ostatak zakiseli 20%-tnom otopinom HCl te ekstrahira etilacetatom. Organski sloj ispere se zasićenom otopinom NaCl, osuši bezvodnim Na₂SO₄ i upari.

Ac-L-Ala-D-Pro-Fca-COOH (6) $R_f = 0.23$ (EtOAc).

IR (CH₂Cl₂) v_{max}/cm⁻¹: 3432 sl (NH_{slobodni}), 3306 j (NH_{asocirani}), 3118 š (OH, COOH), 1710, 1673, 1632 (C=O_{COOH, CONH}), 1544 j (amid II).

Ac-D-Ala-D-Pro-Fca-COOH (7) $R_f = 0.23$ (EtOAc).

IR (CH₂Cl₂) v_{max}/cm⁻¹: 3420 sr (NH_{slobodni}), 3300 j (NH_{asocirani}), 3114-3001 š (OH, COOH), 1692, 1626 (C=O_{COOH}, CONH), 1542 j (amid II).

3.2.5. Postupak priprave Ac-L-Ala-D-Pro-Fca-CON₃ (8) i Ac-D-Ala-D-Pro-Fca-CON₃ (9)

Otopini kiselina 6 (1 g, 2,19 mmol), odnosno 7(1 g, 2,19 mmol) u 10 mL acetona doda se par kapi vode. Reakcijskoj se smjesi, ohlađenoj na 0 °C, dokapa otopina Et_3N

(0,26 g, 2,49 mmol) u acetonu, te otopina ClCOOEt (0,052 g, 1,64 mmol) u acetonu pazeći da temperatura ne prijeđe 5 °C. Nakon 30 minuta miješanja, doda se otopina NaN₃ (0,215 g, 3,29 mmol) u vodi. Nakon 1h miješanja u ledenoj kupelji reakcijska se smjesa razrijedi hladnom vodom, ekstrahira diklormetanom, ispere 5%-tnom zasićenom otopinom NaHCO₃ i zasićenom otopinom NaCl, osuši bezvodnim Na₂SO₄ i upari do suha.

Zbog nepredviđene situacije vezane za COVID-19 i nedostupnosti instrumenata, spojevi nisu podrobno spektroskopski identificirani.

Ac-L-Ala-D-Pro-Fca-CON₃ (8):

 $R_{\rm f} = 0.17 \, ({\rm CH}_2 {\rm Cl}_2 : {\rm MeOH} = 9 : 1).$

IR (CH₂Cl₂) v_{max}/cm⁻¹: 3438 sr (NH_{slobodni}), 3317 j (NH_{asocirani}), 2135 j (N₃), 1711, 1677, 1625 (C=O_{CON3, CONH}), 1545, 1511 (amid II).

Ac-D-Ala-D-Pro-Fca-CON₃(9):

 $R_{\rm f} = 0,21 \ ({\rm CH_2Cl_2}: {\rm MeOH} = 9:1).$

IR (CH₂Cl₂) v_{max}/cm⁻¹: 3423 sr (NH_{slobodni}), 3291 sr (NH_{asocirani}), 2136 j (N₃), 1711, 1680, 1625 (C=O_{CON3, CONH}), 1557, 1510 (amid II).

3.2.6. Postupak priprave Ac-L-Ala-D-Pro-Fn-NHBoc (10) i Ac-D-Ala-D-Pro-Fca-NHBoc (11)

Otopina azida (400 mg) u 8 mL *tert*-butil-alkohola zagrijava se pri 65 °C sve dok na TLC ima traga supstrata (~5h). Reakcijska se smjesa upari, a produkt pročisti tankoslojnom preparativnom kromatografijom (EtOAc).

Ac-L-Ala-D-Pro-Fn-NHBoc (10)

 $R_{\rm f} = 0.33$ (EtOAc).

IR (CH₂Cl₂) v_{max} /cm⁻¹: 3437 sr (NH_{slobodni}), 3329 j (NH_{asocirani}), 1714 j, 1666 j (C=O_{CONH}), 1543 j (amid II).

Ac-D-Ala-D-Pro-Fca-NHBoc (11)

 $R_{\rm f} = 0,25$ (EtOAc).

IR (CH₂Cl₂) v_{max}/cm⁻¹: 3426 j (NH_{slobodni}), 3305 sr (NH_{asocirani}), 1674, 1641 (C=O_{CONH}), 1556 j, 1532 j (amid II).

3.2.7. Postupak priprave tripeptida Ac-L-Ala-D-Pro¹-NH¹-Fn-NH²-L-Pro²-NBoc (**12**), Ac-L-Ala-D-Pro¹-NH¹-Fn-NH²-D-Pro²-NBoc (**13**), Ac-D-Ala-D-Pro¹-NH¹-Fn-NH²-L-Pro²-NBoc (**14**) i Ac-D-Ala-D-Pro¹-NH¹-Fn-NH²-D-Pro²-NBoc (**15**)

Boc-zaštićeni prekursor **10** tj. **11** (300 mg, 0,57 mmol) otopi se u EtOAc, ohladi na 0 °C i izloži djelovanju plinovitog HCl. Nakon 30' miješanja u ledenoj kupelji te otparavanja na rotacijskom vakuum-uparivaču nastali se hidroklorid suspendira u CH₂Cl₂ i obradi sa suviškom Et₃N (pH~9). Dobiveni se slobodni amin kopulira s 250 mg (1,14 mmol) Boc-D/L-Pro-OH primjenom standardnog EDC/HOBt postupka. Nakon 1 sat miješanja pri sobnoj temperaturi rezultirajuća se reakcijska smjesa ispere zasićenom vodenom otopinom NaHCO₃, 10%-tnom otopinom limunske kiseline i zasićenom otopinom NaCl. Organski se sloj osuši bezvodnim Na₂SO₄ i upari do suha. Sirovi produkt pročišćava se tankoslojnom preparativnom kromatografijom na silikagelu uz CH₂Cl₂ : EtOAc = 5 : 1 kao eluens.

Ac-L-Ala-D-Pro¹-NH¹-Fn-NH²-L-Pro²-NBoc (12)

 $t_{\rm t} = 109,7$ °C; $R_{\rm f} = 0,41$ (EtOAc).

IR (CH₂Cl₂) v_{max} /cm⁻¹: 3434 sl (NH_{slobodni}), 3308 j (NH_{asocirani}), 1691, 1674, 1648 (C=O_{CONH}), 1549, 1533, 1478 (amid II).

¹H-NMR (600 MHz, CDCl₃) δ/ppm: 8,48 [s, 1H, NH¹_{Fn}); 8,33 [s, 1H, NH²_{Fn}); 8,01 (s, 1H, NH_{Ala}); 5,37 (s, 1H, H-10); 5,31 (s, 1H, H-7); 4,84 (dq, J = 7,5 Hz, 6,8 Hz, 1H, CH_{Ala}); 4,64 [dd, J = 8,5 Hz, 4,6 Hz, 1H, CH-α (Pro1)]; 4,21 (pt, 2H, H-2, H-5); 4,14 [m, 1H, CH-α (Pro2)]; 3,95 (s, 2H, H-3, H-4); 3,91 (s, 1H, H-8); 3,90 (s, 1H, H-9); 3,84-3,82 [m, 1H, CH₂-δ'(Pro2)]; 3,65 [ddd, J = 10,5 Hz, 7,8 Hz, 5,5 Hz, 1H, CH₂-δ (Pro1)]; 3,58 [td, J = 10,1 Hz, 6,9 Hz, 1H, CH₂-δ (Pro2)]; 3,42 [td, J = 10,3 Hz, 7,0 Hz, 1H, CH₂-δ' (Pro1)]; 2,26 [m, 1H, CH₂-γ (Pro2)]; 2,19 [m, 1H,CH₂-γ (Pro1)]; 2,12-2,07 [m, 2H, CH₂-β, CH₂-β' (Pro1)]; 2,06-2,03 [m, 2H, CH₂-β, CH₂-β' (Pro2)]; 2,00 (s, 3H, CH₃-Ac); 1,98-1,93 [m, 1H, CH₂-γ' (Pro1)]; 1,85-1,83 [m, 1H, CH₂-γ' (Pro2)]; 1,48 [s, 9H, (CH₃)_{3-Boc}]; 1,35 (d, J = 6,66 Hz, 3H, CH_{3-Ala}).

¹³C-NMR (150 MHz, CDCl₃) δ/ppm: 171,43 (CO_{Ala}); 171,25 (CO_{Fn2}); 169,94 (CO_{Fn1}); 169,29 (CO_{Ac}); 155,08 (CO_{Boc}); 96,37 (C-6); 96,08 (C-1); 80,72 (C_{qBoc}); 65,81 (C-8); 65,65 (C-9); 64,72 (C-3); 64,69 (C-4); 62,44 (C-7); 62,39 (C-10); 61,20 (C-2); 61,19 (C-5); 60,91 (C- α , Pro2); 60,60 (C- α , Pro1); 48,02 (CH₂- δ , Pro2); 47,40 (CH₂- δ , Pro1); 47,32 (CH, Ala); 30,54 (CH₂- β , Pro2); 29,68 (CH₂- β , Pro1); 28,65 [(CH₃)_{3-Boc}]; 25,03 (CH₂- γ , Pro1); 24,76 (CH₂- γ , Pro2); 23,50 (CH_{3-Ac}); 18,80 (CH_{3-Ala}).

ESI-MS: izračunato za $C_{30}H_{41}N_5O_6Fe$: 623,5; dobiveno [M+H]⁺ na *m/z* 624,6.

Ac-L-Ala-D-Pro¹-NH¹-Fn-NH²-D-Pro²-NBoc (13)

 $t_{\rm t} = 109,7$ °C; $R_{\rm f} = 0,41$ (EtOAc).

IR (CH₂Cl₂) v_{max}/cm⁻¹: 3424 sl (NH_{slobodni}), 3305 j, 3255 j (NH_{asocirani}), 1686, 1665, 1629 (C=O_{CONH}), 1570, 1508, 1481 (amid II).

¹H-NMR (600 MHz, CDCl₃) δ/ppm: 9,44 [s, 0,9H, NH¹_{Fn trans}); 9,22 [s, 0,1H, NH¹_{Fn cis}); 9,16 [s, 0,9H, NH²_{Fn trans}); 9,10 [s, 0,1H, NH²_{Fn cis}); 6,65 (s, 0,1H, NH_{Ala cis}); 6,54 (d, J = 7,26 Hz, 0,9H, NH_{Ala trans}); 5,37 (s, 1H, H-10); 5,31 (s, 1H, H-7); 4,84 (dq, J = 7,5 Hz, 6,8 Hz, 1H, CH_{Ala}); 4,64 [dd, J = 8,5 Hz, 4,6 Hz, 1H, CH-α (Pro1)]; 4,21 (pt, 2H, H-2, H-5); 4,14 [m, 1H, CH-α (Pro2)]; 3,95 (s, 2H, H-3, H-4); 3,91 (s, 1H, H-8); 3,90 (s, 1H, H-9); 3,84-3,82 [m, 1H, CH₂-δ'(Pro2)]; 3,65 [ddd, J = 10,5 Hz, 7,8 Hz, 5,5 Hz, 1H, CH₂-δ (Pro1)]; 3,58 [td, J = 10,1 Hz, 6,9 Hz, 1H, CH₂-δ (Pro2)]; 3,42 [td, J = 10,3 Hz, 7,0 Hz, 1H, CH₂-δ' (Pro1)]; 2,26 [m, 1H, CH₂-γ (Pro2)]; 2,19 [m, 1H, CH₂-γ (Pro1)]; 2,12-2,07 [m, 2H, CH₂-β, CH₂-β' (Pro1)]; 2,06-2,03 [m, 2H, CH₂-β, CH₂-β' (Pro2)]; 1,48 [s, 9H, (CH₃)_{3-Boc}]; 1,35 (d, J = 6,66 Hz, 3H, CH_{3-Ala}).

¹³C-NMR (150 MHz, CDCl₃) δ/ppm: 171,43 (CO_{Ala}); 171,25 (CO_{Fn2}); 169,94 (CO_{Fn1}); 169,29 (CO_{Ac}); 155,08 (CO_{Boc}); 96,37 (C-6); 96,08 (C-1); 80,72 (C_{qBoc}); 65,81 (C-8); 65,65 (C-9); 64,72 (C-3); 64,69 (C-4); 62,44 (C-7); 62,39 (C-10); 61,20 (C-2); 61,19 (C-5); 60,91 (C- α , Pro2); 60,60 (C- α , Pro1); 48,02 (CH₂- δ , Pro2); 47,40 (CH₂- δ , Pro1); 47,32 (CH, Ala); 30,54 (CH₂- β , Pro2); 29,68 (CH₂- β , Pro1); 28,65 [(CH₃)_{3-Boc}]; 25,03 (CH₂- γ , Pro1); 24,76 (CH₂- γ , Pro2); 23,50 (CH_{3-Ac}); 18,80 (CH_{3-Ala}).

ESI-MS: izračunato za $C_{30}H_{41}N_5O_6Fe: 623,5$; dobiveno [M+H]⁺ na *m/z* 624,6.

Ac-D-Ala-D-Pro¹-NH¹-Fn-NH²-L-Pro²-NBoc (14)

 $t_{\rm t} = 109,7$ °C; $R_{\rm f} = 0,41$ (EtOAc).

IR (CH₂Cl₂) v_{max} /cm⁻¹: 3417 sl (NH_{slobodni}), 3302 j (NH_{asocirani}), 1689, 1675, 1647 (C=O_{CONH}), 1564, 1545, 1534, 1513 (amid II).

¹H-NMR (600 MHz, CDCl₃) δ/ppm: 8,56 [s, 1H, NH¹_{Fn}); 8,27 [s, 1H, NH²_{Fn}); 6,92 (s, 1H, NH_{Ala}); 5,37 (s, 1H, H-10); 5,31 (s, 1H, H-7); 4,84 (dq, J = 7,5 Hz, 6,8 Hz, 1H, CH_{Ala}); 4,64 [dd, J = 8,5 Hz, 4,6 Hz, 1H, CH-α (Pro1)]; 4,21 (pt, 2H, H-2, H-5); 4,14 [m, 1H, CH-α (Pro2)]; 3,95 (s, 2H, H-3, H-4); 3,91 (s, 1H, H-8); 3,90 (s, 1H, H-9); 3,84-3,82 [m, 1H, CH₂-δ'(Pro2)]; 3,65 [ddd, J = 10,5 Hz, 7,8 Hz, 5,5 Hz, 1H, CH₂-δ (Pro1)]; 3,58 [td, J = 10,1 Hz, 6,9 Hz, 1H, CH₂-δ (Pro2)]; 3,42 [td, J = 10,3 Hz, 7,0 Hz, 1H, CH₂-δ' (Pro1)]; 2,26 [m, 1H, CH₂-γ (Pro2)]; 2,19 [m, 1H, CH₂-γ (Pro1)]; 2,12-2,07 [m, 2H, CH₂-β, CH₂-β' (Pro1)]; 2,06-2,03 [m, 1H, CH₂-β (Pro2)]; 2,06-2,03 [m, 2H, CH₂-β (Pro1)]; 2,06-2,03 [m, 2H, CH₂-β (Pro1)]; 2,06-2,03 [m, 2H, CH₂-β (Pro2)]; 2,06-2,03

2H, CH₂-β, CH₂-β' (Pro2)]; 2,00 (s, 3H, CH_{3-Ac}); 1,98-1,93 [m, 1H, CH₂-γ' (Pro1)]; 1,85-1,83 [m, 1H, CH₂-γ' (Pro2)]; 1,48 [s, 9H, (CH₃)_{3-Boc}]; 1,35 (d, *J* = 6,66 Hz, 3H, CH_{3-Ala}).

¹³C-NMR (150 MHz, CDCl₃) δ/ppm: 171,43 (CO_{Ala}); 171,25 (CO_{Fn2}); 169,94 (CO_{Fn1}); 169,29 (CO_{Ac}); 155,08 (CO_{Boc}); 96,37 (C-6); 96,08 (C-1); 80,72 (C_{qBoc}); 65,81 (C-8); 65,65 (C-9); 64,72 (C-3); 64,69 (C-4); 62,44 (C-7); 62,39 (C-10); 61,20 (C-2); 61,19 (C-5); 60,91 (C- α , Pro2); 60,60 (C- α , Pro1); 48,02 (CH₂- δ , Pro2); 47,40 (CH₂- δ , Pro1); 47,32 (CH, Ala); 30,54 (CH₂- β , Pro2); 29,68 (CH₂- β , Pro1); 28,65 [(CH₃)_{3-Boc}]; 25,03 (CH₂- γ , Pro1); 24,76 (CH₂- γ , Pro2); 23,50 (CH_{3-Ac}); 18,80 (CH_{3-Ala}).

ESI-MS: izračunato za $C_{30}H_{41}N_5O_6Fe: 623,5$; dobiveno $[M+H]^+$ na *m/z* 624,6.

Ac-D-Ala-D-Pro¹-NH¹-Fn-NH²-D-Pro²-NBoc (15)

 $t_{\rm t} = 110,3$ °C; $R_{\rm f} = 0,56$ (EtOAc).

IR (CH₂Cl₂) v_{max}/cm⁻¹: 3424 sl (NH_{slobodni}), 3302 j, 3254 j (NH_{asocirani}), 1690, 1667, 1629 (C=O_{CONH}), 1571, 1511, 1481 (amid II).

¹H-NMR (600 MHz, CDCl₃) δ/ppm: 9,38 (s, 1H, NH¹_{Fn}); 9,23 (s, 1H, NH²_{Fn}); 6,23 (d, J = 7,6 Hz, 1H, NH_{Ala}); 5,37(s, 1H, H-10); 5,30 (s, 1H, H-7); 4,80 (dq, J = 7,8 Hz, 7,1 Hz, 1H, CH_{Ala}); 4,69 [dd, J = 8,3 Hz, 5,3 Hz, 1H, CH-α (Pro1)]; 4,28 [dd, J = 8,1 Hz, 4,7 Hz, 1H, CH-α (Pro2)]; 4,19 (s, 1H, H-2); 4,09 (s, 1H, H-5); 3,94 (s, 1H, H-3); 3,93 (s, 1H, H-4); 3,90 (s, 1H, H-8); 3,89 (s, 1H, H-9); 3,80 [td, J = 10,0 Hz, 7,0 Hz,1H, CH₂-δ'(Pro1)]; 3,72 [td, J = 10,0 Hz, 7,0 Hz, 1H, CH₂-δ (Pro1)]; 3,63 [ddd, J = 10,5 Hz, 7,7 Hz, 5,6 Hz, 1H, CH₂-δ'(Pro2)]; 3,42 [td, J = 10,6 Hz, 7,0 Hz, 1H, CH₂-δ (Pro2)]; 2,22-1,98 [m, 8H, CH₂-γ, CH₂-γ' (Pro1), CH₂-γ, CH₂-γ' (Pro2), CH₂-β, CH₂-β' (Pro1), CH₂-β, CH₂-β' (Pro2)]; 1,99 [s, 3H, CH_{3-Ac}); 1,47 [s, 9H, (CH₃)_{3-Boc}]; 1,46 (d, J = 7,15 Hz, 3H, CH_{3-Ala}).

¹³C-NMR (150 MHz, CDCl₃) δ/ppm: 171,57 (CO_{Fn2}); 171,43 (CO_{Ala}); 169,92 (CO_{Fn1}); 169,57 (CO_{Ac}); 155,00 (CO_{Boc}); 96,40 (C-6);96,24 (C-1); 80,60 (C_{qBoc}); 65,79 (C-8); 65,71 (C-9); 64,65 (C-3); 64,62 (C-4); 62,34 (C-7); 62,31 (C-10); 61,18 (C-2); 61,14 (C-5); 60,62 (C- α , Pro1); 60,44 (C- α , Pro2); 47,98 (CH₂- δ , Pro1); 47,36 (CH₂- δ , Pro2); 46,98 (CH_{Ala}); 30,52 (CH₂- β , Pro2); 29,60 (CH₂- β , Pro1); 28,62 [(CH₃)_{3-Boc}]; 25,26 (CH₂- γ , Pro1); 24,77 (CH₂- γ , Pro2); 23,33 (CH_{3-Ac}); 18,07 (CH_{3-Ala}).

ESI-MS: izračunato za $C_{30}H_{41}N_5O_6Fe$: 623,5; dobiveno [M]⁺ na *m/z* 623,3.

4. REZULTATI I RASPRAVA

4.1. UVOD

U Teorijskom dijelu ovog Diplomskog rada napravljen je pregled konformacijskih svojstava ferocenskih biokonjugata **I**, **II** i **III** koji su pripravljeni kopulacijom ferocen-1,1'dikarboksilne kiseline Fcd (**IV**) odnosno 1'-aminoferocen-1-karboksilne kiseline Fca (**V**) s prirodnim aminokiselinama (Slika 11).

Budući da je ferocen idealan kalup za tvorbu vodikovih veza (udaljenost između dva ciklopentadienilna prstena iznosi 3,3 Å) [106], njegovo umetanje u peptidne lanace omogućit će tvorbu različitih strukturnih elemenata (uzvojnice, plohe i okreti). Obrasci IHB na kojima se temelji tvorba sekundarnih strukturnih elemenata u peptidima **I**, **II** i **III** određeni su strukturom ferocenskog sintona (Fcd, Fca, Fcda) te strukturom i apsolutnom konfiguracijom prirodnih aminokiselina.

U nastavku istraživanja vezanih za pripravu peptida izvedenih iz Fcda koja su provedena u sklopu Disertacije [96], odlučili smo pripraviti i strukturno karakterizirati stereoizomerne više homologe peptida **IIIa** (tripeptidi **12-15**) (Slika 25).

Slika 25. Stereoizomerni ferocenski tripeptidi IIIa

Kako smo prethodno napomenuli, na tvorbu vodikovih veza osim same strukture ferocenskog sintona utječe i kiralnost uvedenih aminokiselina. Zato smo odlučili pripraviti ferocenske homo- i heterokiralne tripeptide **IIIa** uvođenjem D/L prolina i D/L alanina te utvrditi kako promjena kiralnosti aminokiselina utječe na tvorbu IHB. U nastavku ćemo opisati sintezu i konformacijsku analizu ferocenskih tripeptida **IIIa**:

- Ac-L-Ala-D-Pro-NH-Fn-NH-L-Pro-Boc (12), heterokiralan tripeptid
- Ac-L-Ala-D-Pro-NH-Fn-NH-D-Pro-Boc (13), heterokiralan tripeptid
- Ac-D-Ala-D-Pro-NH-Fn-NH-L-Pro-Boc (14), heterokiralan tripeptid
- Ac-D-Ala-D-Pro-NH-Fn-NH-D-Pro-Boc (15), homokiralan tripeptid

te njihovih prekursora:

- Boc-D-Pro-Fca-COOMe (1), dipeptid
- Boc-L-Ala-D-Pro-NH-Fca-COOMe (2), heterokiralan tripeptid
- Boc-D-Ala-D-Pro-NH-Fca-COOMe (3), homokiralan tripeptid
- Ac-L-Ala-D-Pro-NH-Fca-COOMe (4), heterokiralan tripeptid
- Ac-D-Ala-D-Pro-NH-Fca-COOMe (5), homokiralan tripeptid

4.2. SINTEZA I KONFORMACIJSKA ANALIZA PREKURSORA TRIPEPTIDA IIIa

4.2.1. Sinteza dipeptida Boc-D-Pro-Fca-OMe (1)

Priprava peptida **1** započinje deprotekcijom amino-skupine iz Fca djelovanjem plinovitog HCl. Nakon obrade nastalog hidroklorida s Et₃N uslijedila je kopulacija slobodnog ferocenskog amina s Boc-D-Pro-OH primjenom standardne HOBt/EDC metode pri čemu je dobiven peptid **1** (Shema 3) [107].

Shema 3. Priprava dipeptida 1 (predstavnika peptida II) iz Fca (V)

Mjerenjem ¹H- i ¹³C-NMR-spektara prolinskog peptida **1** pri sobnoj temperaturi dobiveni su prošireni i srasli signali koje nije bilo moguće asignirati. Njegova je struktura stoga određena mjerenjem NMR-spektara pri 228 K pri čemu je uočen dupli set signala koji odgovara *cis*- i *trans*-izomerima.

¹H-, ¹³C-, COSY- i HMBC-spektroskopijom najprije smo asignirali prolinske *trans*- i *cis*-C_{γ}-atome pri δ = 24,37 odn. 23,43 ppm. Pri tomu smo viši kemijski pomak pripisali *trans*izomeru, a prema visinama signala odredili njihov omjer (*trans* : *cis* = 67 : 33). Razlika kemijskih pomaka C_{β}- (δ = 26,87 ppm) i C_{γ}- atoma (δ = 24,37 ppm) iznosi 2,5 ppm čime je dodatno potvrđena dominacija *trans*-izomera.

4.2.2. Sinteza i konformacijska analiza tripeptidâ Boc-L-Ala-D-Pro-NH-Fca-COOMe (2), Boc-D-Ala-D-Pro-NH-Fca-COOMe (3), Ac-L-Ala-D-Pro-NH-Fca-COOMe (4) i Ac-D-Ala-D-Pro-NH-Fca-COOMe (5)

4.2.2.1. Sinteza tripeptidâ 2-5

Tripeptidi **2-5** pripravljeni su iz Boc-D-Pro-Fca-OMe (**1**) prema postupcima za deprotekciju i kopulaciju opisanih u prethodnom poglavlju. Deprotekcijom terminalnih aminoskupina Boc-dipeptida **1** djelovanjem plinovitog HCl uz naknadnu obradu dobivenih hidroklorida s Et₃N dobiveni su odgovarajući nestabilni amini koji su potom *in situ* kopulirani s prethodno aktiviranim Boc-zaštićenim aminokiselinama (L-Ala, D-Ala) u Boc-tripeptide **2** (89 %) i **3** (95 %). Njihovi su acetamidni analozi **4** (54 %) i **5** (61 %) pripravljeni djelovanjem AcCl na slobodne amine nastale nakon deprotekcije odgovarajućih Boc-tripeptida prethodno opisanim postupkom (Shema 4).

Shema 4. Priprava tripeptida 2-5 iz dipeptida 1

Kopulacija L- odn. D-Ala s prolinskim *N*-terminusom dipeptida **1** očituje se u ¹H-NMRspektrima konjugata **2** i **3** dubletima ($\delta \sim 1,3$ ppm) i multipletima ($\delta \sim 4,51$ ppm) njihovih metilnih, odn. metinskih protona, dok se alaninski signali u ¹³C-NMR-spektrima javljaju pri $\delta \sim 48$ ppm (CH_{Ala}) te $\delta \sim 18$ ppm (CH_{3Ala}). Karbonilna skupina iz novonastale peptidne veze spojeva **2** i **3** registrirana je signalom pri $\delta \sim 173$ ppm. Transformacija Boc-peptida **2** i **3** u Acanaloge **4** i **5** očituje se gubitkom singleta *tert*-butilnih protona pri $\delta \sim 1,5$ ppm te javljanjem singleta acetilnih protona pri $\delta \sim 2$ ppm u njihovim ¹H-NMR-spektrima. U ¹³C-NMR-spektrima ova se zamjena manifestira gubitkom signala karbonilnih i *tert*-butilnih C-atoma pri $\delta \sim 155$ ppm odn. $\delta \sim 28$ ppm te javljanjem novih signala pri $\delta \sim 169$ ppm (CO_{Ac}) i $\delta \sim 23$ ppm (CH_{3Ac}).

S obzirom da pripravljeni tripeptidi sadrže homo- (**3** i **5**) odn. heterokiralne (**2** i **4**) Ala-Pro sekvence s različitim terminalnim zaštitnim skupinama, u nastavku ovoga poglavlja opisat ćemo utjecaj kiralnosti i strukture zaštitnih skupina na njihova konformacijska svojstva.

4.2.2.2. IR-spektroskopska analiza tripeptidâ 2-5

Kako je spomenuto u Teorijskom dijelu, IR-spektroskopija je metoda koja daje pouzdan uvid u konformacijski prostor peptida u otopini [108]. Istezne frekvencije NH-skupina u području nižem od 3400 cm⁻¹ ukazuju na njihovo sudjelovanje u vodikovim vezama, dok se signali iznad 3400 cm⁻¹ pripisuju slobodnim NH-skupinama (Slika 26). Apsorpcijske vrpce karbonilnih esterskih skupina nađene ispod 1730 cm⁻¹ upućuju na njihovo sudjelovanje u vodikovim vezama.

Slika 26. Prikaz područja isteznih frekvencija NH-skupina

Karakter vodikove veze (inter- ili intramolekulski) određuje se mjerenjem koncentracijski ovisnih IR-spektara. Postupnim razrjeđivanjem 50 mM otopine ispitivanog uzorka cijepaju se *intermolekulske vodikove veze* uslijed čega znatno opada intenzitet njihovih signala u području nižem od 3400 cm⁻¹. Ako su u molekuli prisutne *intramolekulske vodikove veze* njihov intenzitet razrjeđivanjem slabi proporcionalno slabljenju signala slobodne NH-skupine.

IR-spektri Boc- i Ac-zaštićenih tripeptida **2-5** u području N-H isteznih vibracija sadrže dvije vrpce različitih intenziteta koje se pripisuju slobodnim (> 3400 cm⁻¹) odn. asociranim (< 3400 cm⁻¹) NH-skupinama. Pri tomu u Boc-tripeptidima (**2** i **3**) te Ac-tripeptidu (**5**) prevladava signal slobodnih NH-skupina, dok kod Ac-heterokiralnog tripeptida (**4**) prevladava signal asociranih NH-skupina (Tablica 1).

poj	Formula	VNH (slob.)	VNH (asoc.)	VCO (ester)	VCO (amid I)	VCO (amid II)
S						
					1659	1561
2	Boc-L-Ala-D-Pro-NH-Fca-COOMe	3432j	3345sr	1708	1620	1544
					1029	1499
					1657	1555
3	Boc-D-Ala-D-Pro-NH-Fca-COOMe	3431j	3303sr	1707	1637	1549
					1634	1498
4	Ac-L-Ala-D-Pro-NH-Fca-COOMe	3438sr	3322ј	1707	1669	1548
4					1659	1510
					1674	1555
5	Ac-D-Ala-D-Pro-NH-Fca-COOMe	3422j	3289sr	1708	1629	1539
					1038	1510

Tablica 1. Istezne vibracije^[a] NH- i CO-skupina tripeptidâ **2-5**

^[a]IR-spektri snimljeni su u CH₂Cl₂, $c = 5 \times 10^{-2}$ M.

Da bi se utvrdio karakter apsorpcijskih vrpci < 3400 cm^{-1} u IR-spektrima analiziranih biokonjugatâ **2-5**, njihova asocijacija ispitana je postupnim razrjeđivanjem njihovih diklormetanskih otopina u koncentracijskom rasponu od 5×10^{-2} M do 3×10^{-3} M. Kako se može vidjeti iz Slike 27, smanjenjem koncentracije dolazi do proporcionalnog slabljenja vrpci asociranih i slobodnih NH-skupina u svim otopinama tripeptida. Zbog toga je predložena stabilizacija ispitivanih tripeptida *intramolekulskim vodikovim vezama* (IHB).

Slika 27. Koncentracijski-ovisni IR-spektri^[a] biokonjugata 2-5

^[a]IR-spektri snimljeni su u CH₂Cl₂, [(--) $c = 5 \times 10^{-2}$ M, (---) $c = 2,5 \times 10^{-2}$ M, (---) $c = 1,25 \times 10^{-2}$ M, (---) $c = 6,13 \times 10^{-3}$ M, (---) $c = 3 \times 10^{-3}$ M].

U sklopu Disertacije [96] pripravljeni su enantiomeri naših tripeptida prikazani na Slici 28.

Boc-L-Ala-D-Pro-NH-Fca-COOMe (2) Boc-D-Ala-D-Pro-NH-Fca-COOMe (3) Ac-L-Ala-D-Pro-NH-Fca-COOMe (4) Ac-D-Ala-D-Pro-NH-Fca-COOMe (5) Boc-D-Ala-L-Pro-NH-Fca-COOMe (XVIII) Boc-L-Ala-L-Pro-NH-Fca-COOMe (XIX) Ac-D-Ala-L-Pro-NH-Fca-COOMe (XX) Ac-L-Ala-L-Pro-NH-Fca-COOMe (XXI)

Slika 28. Stereoizomerni odnosi pripravljenih tripeptida

Usporedbom IR-spektara stereoizomera te enantiomera može se zaključiti da kod prethodno pripravljenih heterokiralnih tripeptida **16** i **18** prevladava signal asociranih NH-skupina. Takav obrazac u ovom radu prati samo heterokiralni tripeptid **4**. Bitno je spomenuti da su tripeptidi **4** i **18** u enantiomernom odnosu, stoga su se takve asocijacije i očekivale.

4.2.2.3. NMR-spektroskopska analiza tripeptidâ 2-5

NMR-spektroskopska analiza omogućava jasniji uvid u obrasce vodikovih veza koje se prethodno predlažu IR-spektroskopijom. Tom je tehnikom moguće razlikovati pojedine NH-skupine u molekuli te na temelju njihovih kemijskih pomaka zaključiti sudjeluju li u vodikovim vezama. Ako NH-skupina ima kemijski pomak iznad 7 ppm, takva će se skupina proglasiti asociranom.

U većini predstavnika ranije opisanih ferocenskih peptida **I** i **II** pokazalo se da NHskupine koje sudjeluju u vodikovim vezama rezoniraju pri $\delta > 7$ ppm, dok su slobodne NHskupine registrirane pri višem polju ($\delta < 7$ ppm). Moguća su i odstupanja od ovog pravila ovisno o kemijskoj okolini donorske NH-grupe.

Primjenom 2D NMR-spektroskopije (COSY, HMBC) provedena je asignacija ¹H- i ¹³C-NMR-spektara pripravljenih konjugata.

Karakteristika svih peptida **2-5** jest visok kemijski pomak NH-skupina iz Fca ($\delta > 8$ ppm) što upućuje na njihovo sudjelovanje u vodikovim vezama. Kemijski pomaci alaninskih amidnih protona ($\delta < 7$ ppm) sugeriraju da NH-skupine udaljene od ferocenske jezgre (**2-5**) nisu donori vodikove veze. Na temelju kemijskih pomaka prolinskih metilenskih skupina [δ (C_{α}/C_{β}) $< \delta$ (C_{γ}/C_{δ})] te razlike u kemijskim pomacima C_{β} – i C_{γ} –atoma ($\Delta\delta < 6$ ppm), zaključili smo da svi ispitivani biokonjugati zauzimaju *trans*-položaj oko imidne veze (Tablica 2).

U NMR spektrima Boc- i Ac-tripeptida (**2** i **4**) s konstituirajućim heterokiralnim Ala-Pro sekvencama pojavljuju se i signali *cis*-izomera. Integriranjem površina amidnih protona u ¹H-NMR-spektrima te određivanjem omjera visine signala prolinskih ugljikovih atoma u ¹³C-NMR spektrima određen je omjer *trans*- i *cis*-izomera koji pri 298 K u peptidima **2** i **4** iznose 86:14.

Spoj	Formula	(NH _{Fca}) _{trans} δ (ppm)	(NH _{Fca}) _{cis} δ (ppm)	(NH _{Ala}) _{trans} δ (ppm)	(NH _{Ala}) _{cis} δ (ppm)
2	Boc-L-Ala-D-Pro-NH-Fca-COOMe	8,47 (0,86 H)	8,83 (0,14 H)	5,35 (0,86 H)	5,11 (0,14 H)
3	Boc-D-Ala-D-Pro-NH-Fca-COOMe	8,40	/	5,50	/
4	Ac-L-Ala-D-Pro-NH-Fca-COOMe	8,43 (0,86 H)	9,11 (0,14 H)	6,51 (0,86 H)	6,27 (0,14 H)
5	Ac-D-Ala-D-Pro-NH-Fca-COOMe	8,33	/	6,80	/

Tablica 2. Kemijski pomaci $(\delta)^{[a]}$ amidnih protona u tripeptidima 2-5

^[a]NMR-spektri snimljeni su u CDCl₃ pri $c = 5 \times 10^{-2}$ M i 298 K.

Dodatni uvid u obrasce i karakter vodikovih veza daju koncentracijski i temperaturno ovisni spektri te titracija 50 mM otopine konjugata s kompeticijskim otapalom DMSO. Iako je kao dio ovog Diplomskog rada bilo predviđeno i provođenje spomenutih spektroskopskih mjerenja, zbog situacije s pandemijom COVID-19 te posljedične nedostupnosti instrumenta za analizu mjerenja se nisu provela.

Potencijalnu ulogu prolina kao začetnika β -okretâ u svim ispitivanim homokiralnim i heterokiralnim tripeptidima 2-5 ispitali smo NOESY NMR-spektroskopskom analizom.

Određivanje peptidnih sekundarnih strukturnih elemenata temelji se na analizi ¹H–¹H NOE kontakata u njihovim NOESY-NMR-spektrima [104, 109, 110].

NOESY-NMR-spektroskopske analize tripeptida **2** sugeriraju njegovu stabilizaciju intramolekulskom vodikovom vezom u kojoj sudjeluju NH-skupina vezana na ferocen te karbonilna karbamatna skupina. Prema strukturi tripeptida **2**, takva bi se IHB mogla realizirati unutar peptidnog lanca vezanog na gornji ferocenski prsten koja rezultira 10-članim IHB prstenom (NH_{Fca} ...OC_{Boc}) (Prilog 1).

Slično, u homokiralnom analogu **3** NH-skupina vezana na ferocen prema prethodno opisanim analizama tvori intralančanu vodikovu vezu s karbamatnom skupinom $(NH_{Fca}...OC_{Boc})$ inducirajući β -okret (Prilog 1).

Zamjenom terminalne zaštitne skupine mijenja se obrazac vodikovih veza u NOESY spektrima Ac-analogâ **4** i **5** pa na temelju kontakata možemo pretpostaviti da se u ovim peptidima uspostavljaju NH_{Fca}...NH_{Ala} vodikove veze koje tvore 8-člani IHB prsten (Prilog 2).

4.2.2.4. CD-spektroskopska analiza tripeptidâ 2-5

Cirkularni dikroizam (CD) je spektroskopska metoda koja se koristi za određivanje sekundarnih strukturnih elemenata u kiralnim peptidima [11, 104]. Pokazalo se da uvođenjem ferocenskog kromofora ($\lambda \sim 480$ nm) u kiralno peptidno okruženje I i II dolazi do pojave Cottonovog efekta koji je posljedica helične kiralnosti uzrokovane interlančanim IHB [67, 75-77, 79-91, 111-117]. Na predznak Cottonovog efekta utječu otapalo, zaštitne skupine te vrsta i slijed vezanih prirodnih aminokiselina.

Kako smo na temelju IR- i NMR-spektroskopskih mjerenja pretpostavili tvorbu intralančanih vodikovih veza NH_{Fca}···OC_{Boc/Ac} koje dovođe do tvorbe β -okretâ u peptidima 2 i 3 te NH_{Fca}···N_{Ala} 8-članim prstenovima u peptidima 4 i 5, odlučili smo provesti CDspektroskopsku analizu. Kako vodikove veze induciraju kiralno uređenje oko ferocenskog kromofora ($\lambda \sim 480$ nm) očekuje se CD-aktivnost ispitanih peptida.

Položaj apsorpcijskih vrpci karakterističnih za ferocenski kromofor (464 – 496 nm) ukazuje na kiralno uređenje ispitanih peptida. Širok raspon apsolutnih vrijednosti Cottonovih efekata (242 do 3073 deg cm² mol⁻¹) upućuje na različite stupnjeve kiralnog uređenja (Tablica 3). Niže vrijednosti Cottonovih efekata ($M_{\Theta} < 1000 \text{ deg cm}^2 \text{ mol}^{-1}$) u peptidima **4** i **5** mogu se objasniti prisutnošću malog suviška uređenih konformera u njihovim otopinama. Jači CD-signali peptida **2** i **3** upućuju na prisutnost visokouređenih kiralnih struktura, što potkrepljuje nalaze IR- i NMR-spektroskopije (Slika 29).

•—		λ_{max}	/ nm	[θ]/ deg cm ² dmol ⁻¹		
Spo	Formula	CH ₂ Cl ₂	CH ₂ Cl ₂ + DMSO	CH ₂ Cl ₂	CH ₂ Cl ₂ + DMSO	
2	Boc-L-Ala-D-Pro-NH-Fca-COOMe	464	454	1832	388	
3	Boc-D-Ala-D-Pro-NH-Fca-COOMe	481	482	3073	3606	
4	Ac-L-Ala-D-Pro-NH-Fca-COOMe	496	486	242	876	
5	Ac-D-Ala-D-Pro-NH-Fca-COOMe	490	485	786	919	

Tablica 3. UV/Vis-s	ignali i Cottonovi efekti	u tripeptidima 2-5 ^[a]
---------------------	---------------------------	-----------------------------------

^[a]CD-spektri mjereni su u CH₂Cl₂ ($c = 5 \times 10^{-3}$ M) i uz dodatak 20 % DMSO.

Slika 29. Cottonovi efekti u CD-spektrima peptida 2-5^[a]

^[a]CD-spektri mjereni su u diklormetanu ($c = 5 \times 10^{-3}$ M).

4.3. SINTEZA I KONFORMACIJSKA ANALIZA TRIPEPTIDA IIIa

4.3.1. Sinteza i konformacijska analiza tripeptidâ Ac-L-Ala-D-Pro-NH-Fn-NH-L-Pro-Boc (12), Ac-L-Ala-D-Pro-NH-Fn-NH-D-Pro-Boc (13), Ac-D-Ala-D-Pro-NH-Fn-NH-L-Pro-Boc (14) i Ac-D-Ala-D-Pro-NH-Fn-NH-D-Pro-Boc (15)

4.3.1.1. Sinteza tripeptidâ 12-15

Peptidi 12-15 pripravljeni su iz peptida 10 i 11 deprotekcijom Boc-zaštićenih aminoskupina djelovanjem plinovitog HCl te su odgovarajući hidrokloridi obrađeni s Et_3N . Uobičajenim HOBt/EDC postupkom dobiveni slobodni amini kopulirani su s Boc-D/L-Pro-OH u 72 % i 74 % tripeptida 12 i 13, odn. 84 % i 80 % tripeptida 14 i 15 (Shema 5).

Shema 5. Priprava tripeptida 12-15

Ulazak nove prolinske podjedinice registriran je u ¹H-NMR-spektrima peptida **12-15** signalima njezinih metilenskih ($\delta = 1,8-3,5$ ppm) i metinskih protona ($\delta \sim 4$ ppm). Signali pirolidinskih [CH_{\alphaPro} ($\delta \sim 60$ ppm), CH_{2\delta} ($\delta \sim 47$ ppm), CH_{2\delta} ($\delta \sim 29,74$ ppm) te CH_{2\geta} ($\delta \sim 24$ ppm)] i karbonilnih ugljikovih atoma iz nove imidne veze pri $\delta \sim 170$ ppm u ¹³C-NMRspektrima dodatno potvrđuju strukturu tripeptida **12-15**.

4.3.1.2. IR- spektroskopska analiza tripeptidâ 12-15

U IR-spektrima svih tripeptida ($c = 5 \times 10^{-2}$ M) vidljiva su dva seta signala u području isteznih vibracija NH-skupina pri čemu dominiraju signali asociranih NH-skupina (< 3400 cm⁻¹) (Tablica 4), dok su istezne vibracije slobodnih NH-skupina iznad 3400 cm⁻¹ slabe.

Spoj	Formula	VNH (slob.) ^[b]	₩NH (asoc.) ^[c]	VCO (amid I)	VCO (amid II)
12	Ac-L-Ala-D-Pro-NH-Fn-NH-L-Pro-Boc	3434sl	3308j	1691 1674 1648	1549 1533 1478
13	Ac-L-Ala-D-Pro-NH-Fn-NH-D-Pro-Boc	3424sl	3305j 3255j	1686 1665 1629	1570 1508 1481
14	Ac-D-Ala-D-Pro-NH-Fn-NH-L-Pro-Boc	3417sl	3302j	1689 1675 1647	1564 1545 1534 1513
15	Ac-D-Ala-D-Pro-NH-Fn-NH-D-Pro-Boc	3424sl	3302j 3254j	1690 1667 1629	1571 1511 1481

Tablica 4. Istezne vibracije^[a] NH- i CO-skupina tripeptida **12-15**

^[a]IR-spektri snimljeni su u CH₂Cl₂, $c = 5 \times 10^{-2}$ M.

Na Slici 30 vidljivo je da tripeptidi **13** i **15** imaju izražajnije signale asociranih NHskupina. Mjerenjem IR-spektara postupnim razrjeđivanjem diklormetanskih otopina ispitivanih uzoraka tripeptida **12-15** dolazi do proporcionalnog slabljenja signala i slobodne i asocirane NH-skupine, što sugerira sudjelovanje asociranih NH-skupina u *intramolekulskim vodikovim vezama* (IHB) u tripeptidima **12-15**.

Slika 30. Koncentracijski-ovisni IR-spektri^[a] biokonjugata 12-15

^[a]IR-spektri snimljeni su u CH₂Cl₂, [(---) $c = 5 \times 10^{-2}$ M, (----) $c = 2,5 \times 10^{-2}$ M, (---) $c = 1,25 \times 10^{-2}$ M, (---) $c = 6,13 \times 10^{-3}$ M, (---) $c = 3 \times 10^{-3}$ M].

U sklopu Disertacije [96] pripravljeni su enantiomeri naših tripeptida prikazani na Slici 31.

Ac-L-Ala-D-Pro-NH-Fn-NH-D-Pro-Boc (13)Ac-D-Ala-L-Pro-NH-Fn-NH-L-Pro-Boc (XXII)Ac-D-Ala-D-Pro-NH-Fn-NH-D-Pro-Boc (15)Ac-L-Ala-L-Pro-NH-Fn-NH-L-Pro-Boc (XXIII)

Slika 31. Enantiomerni odnosi pripravljenih tripeptida

Sva 4 enantiomera pokazuju dominaciju signala asociranih NH-skupina.

4.3.1.3. NMR-spektroskopska analiza tripeptidâ 12-15

Karakteristika svih tripeptida jest visok kemijski pomak amidnih protona (NH¹_{Fn} i NH²_{Fn}) vezanih za ferocensku jezgru ($\delta > 8$ ppm) što ukazuje na njihovo sudjelovanje u vodikovim vezama. Budući da se alaninske NH-skupine tripeptida **13**, **14** i **15** registriraju pri višem polju ($\delta < 7$ ppm), upitna je njihova donorska uloga u HB (Tablica 5). Zamjetan je pomak alaninske NH-skupine tripeptida **12** u niže polje (8,01 ppm) što govori o sudjelovanju tog protona u vodikovoj vezi. Razlika u kemijskim pomacima prolinskih metilenskih skupina [δ (C_{α}/C_{β}) < δ (C_{γ}/C_{δ})] te razlika u kemijskim pomacima C_{β} – i C_{γ} – atoma ($\delta < 6$ ppm) indiciraju da tripeptida **13** javljaju se i signali *cis*-izomera čiji je udio (10%) određen integriranjem površina amidnih protona u ¹H-NMR-spektrima i određivanjem omjera visine signala prolinskih ugljikovih atoma u ¹³C-NMR-spektrima.

Spoj	Formula	(NH ¹ _{Fn}) _{trans} δ (ppm)	(NH ¹ Fn) _{cis} δ (ppm)	(NH ² Fn) _{trans} δ (ppm)	(NH ² Fn) _{cis} δ (ppm)	(NH _{Ala}) _{trans} δ (ppm)	(NH _{Ala}) _{cis} δ (ppm)
12	Ac-L-Ala-D-Pro ¹ -NH ¹ - Fn-NH ² -L-Pro ² -NBoc	8,48	/	8,33	/	8,01	/
13	Ac-L-Ala-D-Pro ¹ -NH ¹ - Fn-NH ² -D-Pro ² -NBoc	9,44 (0,90 H)	9,22 (0,10 H)	9,16 (0,90 H)	9,10 (0,10 H)	6,54 (0,90 H)	6,65 (0,10 H)
14	Ac-D-Ala-D-Pro ¹ -NH ¹ - Fn-NH ² -L-Pro ² -NBoc	8,56	/	8,27	/	6,92	/
15	Ac-D-Ala-D-Pro ¹ -NH ¹ - Fn-NH ² -D-Pro ² -NBoc	9,38	/	9,23	/	6,23	/

Tablica 5. Kemijski pomaci $(\delta)^{[a]}$ amidnih protona u tripeptidima **12-15**

^[a]NMR-spektri snimljeni su u CDCl₃ pri $c = 5 \times 10^{-2}$ M i 298 K.

NOE-kontakti u spektrima peptida **12-15** dani su u Prilozima 3-6 te upućuju na tvorbu vodikovih veza koje su uspostavljene putem različitih IHB-prstenova. Tripeptidi **13** i **15** tvore 10- (NH^{1}_{Fn} ...OC_{Boc}) i 13-člane (NH^{2}_{Fn} ...OC_{Ac}) IHB-prstenove. Tripeptid **12** ostvaruje vodikove

veze NH^{2}_{Fn} ... OC_{Ala} i NH_{Ala} ... OC_{Boc} putem. Prema NOESY spektrima tripeptid **14** tvori vodikove veze sudjelovanjem samo amidnog NH^{2}_{Fn} protona u vodikovoj vezi s OC_{Ac} i OC_{Ala} . Očito je da D-Pro koji je vezan na obje ciklopentadienilne jedinice pogoduje tvorbi 10- (NH^{1}_{Fn} ... OC_{Boc}) i 13-članih (NH^{2}_{Fn} ... OC_{Ac}) IHB-prstenova. Promjenom kiralnosti prolina na donjem prstenu dolazi do onemogućavanja sudjelovanja NH^{1}_{Fn} protona u tvorbi vodikovih veza. Može se zaključiti da promjenom kiralnosti peptidne sekvence dolazi do promjene obrasca vodikovih veza.

4.3.1.4. CD-spektroskopska analiza tripeptidâ 12-15

Kako prethodne analize tripeptida **12-15** ukazuju na prisutnost IHB, očekuje se i visok stupanj kiralnog uređenja u otopini što se očituje izrazitom CD-aktivnošću. Višestruko povećane vrijednosti Cottonovih efekata heterokiralnog peptida **13** (24093 deg cm² dmol⁻¹) i homokiralnog peptida **15** (31472 deg cm² dmol⁻¹) u odnosu na analoge **12** i **14** upućuju na postignuti viši stupanj kiralnog uređenja zbog jakih vodikovih veza (Tablica 6).

Spoj	Essentia	λ_{max}	x/nm	[θ]/ deg cm ² dmol ⁻¹		
	Formula	CH ₂ Cl ₂	$CH_2Cl_2 +$	CH ₂ Cl ₂	$CH_2Cl_2 +$	
•1			DMSO		DMSO	
12	Ac-L-Ala-D-Pro-NH-Fn-NH-L-Pro-Boc	477	464	1603	2279	
13	Ac-L-Ala-D-Pro-NH-Fn-NH-D-Pro-Boc	472	472	24093	20124	
14	Ac-D-Ala-D-Pro-NH-Fn-NH-L-Pro-Boc	464	469	3066	1897	
15	Ac-D-Ala-D-Pro-NH-Fn-NH-D-Pro-Boc	471	471	31472	30013	

Tablica 6. UV/Vis-signali i Cottonovi efekti u tripeptidima 12-15^[a]

^[a]CD-spektri mjereni su u CH₂Cl₂ ($c = 5 \times 10^{-3}$ M) i uz dodatak 20 % DMSO.

Pretpostavku o jakim IHB moguće je dodatno ispitati titracijom 5 mM otopine peptida s kompeticijskim otapalom (DMSO). Ukoliko u otopini postoje visokouređene strukture, dodatak DMSO-a neće zamjetno utjecati na intenzitet Cottonovog efekta. Iz Tablice 9 vidljivo je da dodatak DMSO-a kod heterokiralnog peptida **13** uzrokuje nešto zamjetnije slabljenje Cottonova efekta (16 %), dok njegov dodatak gotovo ne utječe na jakost CD-signala (5 %) homokiralnog peptida **15** što ukazuje na njegovu stabilizaciju jačim IHB (Tablica 6, Slika 32).

Zamjetniji pad jakosti CD-signala od 38 % vidljiv je kod tripeptida **14**, dok kod tripeptida **12** dolazi do povećanja intenziteta u signalu nakon dodatka DMSO (42 %).

Slika 32. Cottonovi efekti u CD-spektrima peptida 12-15

^[a]CD-spektri mjereni su u diklormetanu [$c = 5 \times 10^{-3}$ M (puna crta)] i uz dodatak 20 % DMSO (isprekidana crta).

Na Slici 31 prikazani su enantiomeri (**XXII** i **XXII**) tripeptida **13** i **15** koji su prethodno pripravljeni u sklopu Disertacije [96]. Enantiomeri pokazuju suprotan predznak CD-aktivnosti, dok je iznos Cottonovog efekta u potpunosti jednak, kao i redukcija signala nakon dodatka DMSO (Slika 33).

Slika 33. Cottonovi efekti u CD-spektrima peptida 13 i 15 te njihovih enantiomera XXII i XXIII

^[a]CD-spektri mjereni su u diklormetanu [$c = 5 \times 10^{-3}$ M (puna crta)] i uz dodatak 20 % DMSO (isprekidana crta)

4.3.1.5. DFT-modeliranje tripeptidâ 12-15

DFT (teorija funkcionala gustoće, engl. *Density Functional Theory*) je računalna metoda koja može poslužiti za proučavanje konformacijskog prostora koje zauzimaju ferocenski konjugati [118].

Matematičkim modeliranjem tripeptida **12-15** moguće je dobiti jednu od prikazane 4 konformacije **A**, **B**, **C** i **D** (Slika 34).

Slika 34. Hipotetske konformacije tripeptida 12-15

U Tablici 7 prikazane su konformacije kojeg svaki tripeptida može zauzeti, pri čemu je najstabilnija ona koja ima 0 kJ mol⁻¹ energije.

Tablica 7. Relativna energija (u kJ mol⁻¹) najstabilnijih konformera u kloroformu pri 298 K*

KONFORMER	$E_{\rm rel}$	IHB OBRAZAC	NH _{Fc(Ac)} OC _{Boc} 10-člani	NH _{Fc(Ac)} …OC _{Ac} 10-člani	NH _{Fc(Ac)} …OC _{Ala} 7-člani	NH _{Ala} …OC _{Boc} 16-člani	NH _{Fc(Boc)} …OC _{Ac} 13- člani	NH _{Fc(Boc)} …OC _{Ala} 10-člani
15-1	0.00	Α	2.85	-	-	-	2.83	-
15-2	2.02	Α	2.87	-	-	-	2.84	-
15-3	4.32	Α	2.86	-	-	-	2.82	-
13-1	0.00	Α	2.87	-	-	-	2.86	-
13-2	0.12	Α	2.86	-	-	-	2.86	-
13-3	0.71	Α	2.85	-	-	-	2.86	-
13-4	0.88	Α	2.85	-	-	-	2.87	-
12-1	0.00	В	-	2.95	-	2.83	-	2.96
12-2	0.70	В	-	2.94	-	2.83	-	2.93
12-3	2.09	С	-	-	2.85	2.86	-	2.93
12-4	3.74	С	-	-	2.85	2.86	-	2.95
14-1	0.00	D	3.17	-	-	-	-	2.88
14-2	4.11	С	-	-	2.92	2.89	-	2.87

*Obrazac IHB veza prikazan je na Slici 34.

Iz Tablice 7, kao i sa Slike 35 može se vidjeti da najstabilniju konformaciju tripeptida 13 i 15 karakteriziraju dvije interlančane IHB uspostavljene između NH-skupina vezanih na ferocenski prsten i karbonila iz zaštitnih skupina zatvarajući 10-člane i 13-člane prstenove ($NH^1...OC_{Boc}$ i $NH^2...OC_{Ac}$) što odgovara konformaciji tipa **A**. Računalno pretpostavljeni IHB obrasci odgovaraju pronađenim kontaktima u NOESY spektrima tripeptida 13 i 15 (Prilog 4, Prilog 6).

Tripeptid **12** (Slika 36, Tablica 7) ostvaruje najnižu energiju stabilizacijom putem konformacije **B**, koja pretpostavlja tvorbu triju IHB veza: intralančane NH¹···OC_{Ac} (10-člani prsten), NH²···OC_{Ala} (10-člani prsten) te NH_{Ala}···OC_{Boc} (16-člani prsten). Uspoređujući DFT modelirane vodikove veze s NOESY spektrima tripeptida **12** (Prilog 3) može se zaključiti da su vodikove veze NH²···OC_{Ala} te NH_{Ala}···OC_{Boc} ostvarene u oba slučaja, dok u NMR spektru izostaju kontakti koji bi potvrdili postojanje intralančane NH¹···OC_{Ac} koja zatvara10-člani IHB prsten.

Najstabilnija konformacija tripeptida **14** stabilizirana je intramolekulskim vodikovim vezama prikazanim u konformeru **D** (Slika 34) pri čemu dolazi do zatvaranja dvaju 10-članih prstenova: $NH^{1}...OC_{Boc}$ te $NH^{2}...OC_{Ala}$. U NOESY spektrima pronađeni su kontakti koji podržavaju tvorbu $NH^{2}...OC_{Ala}$ te $NH^{2}...OC_{Ac}$ (Prilog 5).

Slika 35. Grafički prikaz odnosa u relativnoj energiji najstabilnijih konformera tripeptida 13 i 15 s udaljenostima X–H…Y veza (u Å)

Slika 36. Grafički prikaz odnosa u relativnoj energiji najstabilnijih konformera tripeptida 12 i 14 s udaljenostima X–H…Y veza (u Å)

5. ZAKLJUČCI

1. Prvi dio ovog diplomskog rada obuhvaća pripravu i konformacijsku analizu tripeptidâ Boc-L-Ala-D-Pro-NH-Fca-COOMe (2), Boc-D-Ala-D-Pro-NH-Fca-COOMe (3), Ac-L-Ala-D-Pro-NH-Fca-COOMe (4) i Ac-D-Ala-D-Pro-NH-Fca-COOMe (5):

- Boc-tripeptidi 2 i 3 pripravljeni su u izvrsnim iskorištenjima od 89 % tj. 95 % dok su njihovi acetamidni analozi 4 i 5 pripravljeni u nešto nižem iskorištenju od 54 % odn. 61 %.
- ✓ U Boc-tripeptidima (2 i 3) te Ac-tripeptidu (5) prevladava signal slobodnih NHskupina, dok kod Ac-heterokiralnog tripeptida (4) prevladava signal asociranih NHskupina.
- ✓ Karakteristika svih peptida 2-5 jest visok kemijski pomak NH-skupina iz Fca ($\delta > 8$ ppm) što upućuje na njihovo sudjelovanje u vodikovim vezama.
- ✓ Na temelju kemijskih pomaka prolinskih metilenskih skupina te razlike u kemijskim pomacima C_{β} i C_{γ} -atoma zaključili smo da svi ispitivani biokonjugati zauzimaju *trans*-položaj oko imidne veze.
- ✓ Prema rezultatima spektroskopskih analiza, homo- i heterokiralni Boc-tripeptidi 2 i
 3 ostvaruju konformaciju β-okreta uspostavljanjem NH_{Fca}...OC_{Boc} IHB.
- ✓ Zamjena zaštitnih skupina Boc-peptida 2 i 3 odrazila se na IHB-obrasce rezultirajućih Ac-analoga 4 i 5. Uvedena Ac-skupina ne akceptira H-vezu te se pripadajući peptidi stabiliziraju 8-članim NH_{Fca}...N_{Ala} IHB-prstenovima.
- ✓ Širok raspon apsolutnih vrijednosti Cottonovih efekata peptida 2-5 (242 do 3703 deg cm² dmol⁻¹) upućuje na različite stupnjeve kiralnog uređenja.

2. Uvođenjem amino-skupine na *N*-terminus donjeg ciklopentadienilnog prstena prekursora **10** i **11** pripravljeni su Ac-L-Ala-D-Pro-NH-Fn-NH-L-Pro-Boc (**12**), Ac-L-Ala-D-Pro-NH-Fn-NH-D-Pro-Boc (**13**), Ac-D-Ala-D-Pro-NH-Fn-NH-L-Pro-Boc (**14**) i Ac-D-Ala-D-Pro-NH-Fn-NH-D-Pro-Boc (**15**) za koje je načinjena konformacijska analiza primjenom IR-, CD- i ¹H-NMR-spektroskopije i računalnih postupaka:

✓ Iskorištenje reakcije za tripeptide 12 i 13 iznosi 72 % i 74 %, odn. 84 % i 80 % za tripeptide 14 i 15.

- ✓ U IR-spektrima svih tripeptida ($c = 5 \times 10^{-2}$ M) vidljiva su dva seta signala u području isteznih vibracija NH-skupina pri čemu dominiraju signali asociranih NH-skupina.
- ✓ Tripeptidi 13 i 15 imaju izražajnije signale asociranih NH-skupina.
- Koncentracijski-ovisna IR-spektroskopija tripeptida 12-15 ukazuje na karakter asocijacija NH-skupina: dolazi do ravnomjernog slabljenja intenziteta apsorpcijskih vrpci i slobodnih i asociranih NH-skupina, pa zaključujemo da se radi o intramolekulskim vodikovim vezama (IHB).
- ✓ Visok kemijski pomak amidnih protona (NH¹_{Fn} i NH²_{Fn}) tripeptida **12-15** vezanih za ferocensku jezgru ($\delta > 8$ ppm) ukazuje na njihovo sudjelovanje u vodikovim vezama.
- ✓ Alaninske NH-skupine registriraju se pri višem polju ($\delta < 7$ ppm) pa je upitna njihova donorska uloga u HB.
- ✓ Na temelju kemijskih pomaka prolinskih metilenskih skupina te razlike u kemijskim pomacima C_{β} i C_{γ} -atoma zaključili smo da tripeptidi **12-15** zauzimaju *trans*-položaj oko imidne veze.
- ✓ U IR-spektrima dominiraju intramolekulski asocirane NH-skupine; NMR-analiza upućuje na NH_{Fn}-skupine kao donore vodikove veze.
- ✓ Prema NOESY spektrima tripeptida 12-15 može se zaključiti da promjenom kiralnosti peptidne sekvence dolazi do promjene obrasca vodikovih veza.
- ✓ Jaki pozitivni Cottonovi efekti (~ 30000 deg cm² dmol⁻¹) za tripeptide 13 i 15 čiji se intenzitet tek neznatno mijenja dodatkom DMSO indiciraju tvorbu visokouređenih *M*-uzvojnica.
- ✓ Računalno pretpostavljeni IHB obrasci odgovaraju pronađenim kontaktima u NOESY spektrima tripeptida 13 i 15 [njihovi NOE-kontakti upućuju na tvorbu vodikove veze koja je uspostavljena putem 10- (NH¹_{Fn}^{...}OC_{Boc}) i 13-članih (NH²_{Fn}^{...}OC_{Ac}) IHB-prstenova].
- ✓ Usporedbom DFT analize s NOESY spektrima tripeptida 12 vidljivo je da su vodikove veze NH²…OC_{Ala} te NH_{Ala}…OC_{Boc} ostvarene su u oba slučaja, dok u NMR spektru izostaju kontakti koji bi potvrdili postojanje intralančane NH¹…OC_{Ac} koja zatvara10-člani IHB prsten.
- ✓ U NOESY spektrima tripeptida 14 pronađeni su kontakti koji podržavaju tvorbu NH²…OC_{Ala} te NH²…OC_{Ac}, dok su DFT analizom predložene vodikove veze koje se ostvaruju NH¹…OC_{Boc} te NH²…OC_{Ala} putem.

6. LITERATURA

1. Stryer, L. (1991) Biokemija (preveli Vuk-Pavlović, S., Kućan, Ž.), Školska knjiga, Zagreb.

 Liskamp, R. M. J., Rijkers, D. T. S., Kruijtzer, J. A. W., Kemmink, J. (2011) Peptides and Proteins as a Continuing Exciting Source of Inspiration for Peptidomimetics. *ChemBioChem.* 12, 1626-1653.

3. Gilbert, H. F (2010) Peptide Bonds, Disulfide Bonds and Properties of Small Peptides.U: *Encyclopedia of Life Sciences*, John Wiley & Sons Ltd., Chichester.

4. Mahesh, S., Tang, K.-C., Raj, M. (2018) Amide Bond Activation of Biological Molecules. *Molecules* **23**, 2615-2658.

5. Gromiha, M. M. (2010) *Protein Bioinformatics: From Sequence to Function*. Academic Press, A Division of Reed Elsevier India Pvt. Ltd., New Delhi, str. 1-27.

6. Reeb, J., Rost, B. (2019) Secondary Structure Prediction. U: *Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics* (Ranganathan, S., Nakai, K., Schönbach, C., Gribskov, M., ured.), Elsevier, Amsterdam/Boston/Heidelberg/London/New York/Oxford/Paris/San Diego/San Francisco/Singapur/Sydney/Tokio.

7. Ji, Y. Y., Li, Y. Q. (2010) The Role of Secondary Structure in Protein Structure Selection. *Eur. Phys. J. E* **32**, 103–107.

8. Zeeshan, F., Tabbassum, M., Kesharwani, P. (2019) Investigation on Secondary Structure Alterations of Protein Drugs as an Indicator of Their Biological Activity Upon Thermal Exposure. *Protein J.* **38**, 551-564.

9. Thành, M. X. (2015) Effect of Secondary Structure on Biological Activities of Antimicrobial Peptides. *VNU Journal of Science: Natural Sciences and Technology* **31**, 44-53.

10. Mai, X.- T., Huang, J., Tan, J., Huang, Y., Chen, Y. (2015) Effects and mechanisms of the secondary structure on the antimicrobial activity and specificity of antimicrobial peptides. *J. Pept. Sci.* **21**, 561-568.

11. Pelton, J., McLean, L. (2000) Spectroscopic Methods for Analysis of Protein Secondary Structure. *Anal. Biochem.* **277**, 167-176.

12. Ganesh, S., Jayakumar, R. (2002) Role of N-t-Boc group in helix initiation in a novel tetrapeptide. *J. Peptide Res.* **59**, 249-256.

13. Barth, A. (2007) Infrared spectroscopy of proteins. *Biochim. Biophys. Acta, Bioenerg.* **1767**, 1073-1101.

14. Miles, A. J., Wallace, B. A. (2016) Circular dichroism spectroscopy of membrane proteins. *Chem. Soc. Rev.* **45**, 4859-4872.

15. Corrêa, D. H. A., Ramos, C. H. I. (2009) The use of circular dichroism spectroscopy to study protein folding, form and function. *Afr. J. Biochem. Res.* **3**, 164-173.

16. Szabados, L., Savouré, A. (2010) Proline: a multifunctional amino acid. *Trends Plant Sci.*15, 89-97.

17. Yaron, A., Naider, F. (1993) Proline-Dependent Structural and Biological Properties of Peptides and Proteins. *Crit. Rev. Biochem. Mol. Biol.* **28**, 31-81.

18. Mothes, C., Caumes, C., Guez, A., Boullet, H., Gendrineau, T., Darses, S., Delsuc, N., Moumné, R., Oswald, B., Lequin, O., Karoyan, P. (2013) 3-Substituted Prolines: From Synthesis to Structural Applications, from Peptides to Foldamers. *Molecules* **18**, 2307-2327.

Melnikov, S., Mailliot, J., Rigger, L., Neuner, S., Shin, B., Yusupova, G., Dever, T., Micura, R., Yusupov, M. (2016) Molecular insights into protein synthesis with proline residues. *EMBO Rep.* 17, 1776-1784.

20. Doerfel, L. K., Wohlgemuth, I., Kubyshkin, V., Starosta, A. L., Wilson, D. N., Budisa, N., Rodnina, M. V. (2015) Entropic Contribution of Elongation Factor P to Proline Positioning at the Catalytic Center of the Ribosome. *J. Am. Chem. Soc.* **137**, 12997 – 13006.

 Kovačević, M., Molčanov, K., Radošević, K., Srček, V., Roca, S., Čače, A., Barišić, L.
 (2014) Conjugates of 1'-Aminoferrocene-1-carboxylic Acid and Proline: Synthesis, Conformational Analysis and Biological Evaluation. *Molecules* 19, 12852-12880.

22. Vanhoof, G., Goossens, F., De Meester, I., Hendriks, D., Scharpé, S. (1995) Proline motifs in peptides and their biological processing. *FASEB J.* **9**, 736–744.

23. Kay, B. K., Williamson, M. P., Sudol, M. (2000) The importance of being proline: The interaction of proline-rich motifs in signalling proteins with their cognate domains. *FASEB J*. **14**, 231–241.

24. Troganis, A., Gerothanassis, I. P., Athanassiou, Z., Mavromoustakos, T., Hawkes, G. E., Sakarellos, C. (2000) Thermodynamic origin of cis/trans isomers of a proline-containing betaturn model dipeptide in aqueous solution: A combined variable temperature ¹H-NMR, twodimensional ¹H,¹H gradient enhanced nuclear Overhauser effect spectroscopy (NOESY), onedimensional steady-state intermolecular ¹³C, ¹H NOE, and molecular dynamics study. *Biopolymers* **53**, 72–83.

25. Pandey, A., Naduthambi, D., Thomas, K., Zondlo, N. (2013) Proline Editing: A General and Practical Approach to the Synthesis of Functionally and Structurally Diverse Peptides. Analysis of Steric versus Stereoelectronic Effects of 4-Substituted Prolines on Conformation within Peptides. *J. Am. Chem. Soc.* **135**, 4333-4363.

26. Williamson, M. P. (1994) The structure and function of proline-rich regions in proteins. *Biochem. J.* **297**, 249-260.

 Mehansho, H., Butler, L. G., Carlson, D. M. (1987) Dietary Tannins and Salivary Proline-Rich Proteins: Interactions, Induction, and Defense Mechanisms. *Annu. Rev. Nutr.* 7, 423-440.
 Smirnoff, N., Cumbes, Q. J. (1989) Hydroxyl radical scavenging activity of compatible solutes. *Phytochemistry* 28, 1057–1060.

29. Matysik, J., Alia, A., Bhalu, B., Mohanty, P. (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. *Curr. Sci.* **82**, 525–532.

30. Chen, C., Dickman, M. B. (2005) Proline suppresses apoptosis in the fungal pathogen *Colletotrichum trifolii. Proc. Natl. Acad. Sci. U. S. A.* **102**, 3459–3464.

31. Krishnan, N., Dickman, M. B., Becker, D. F. (2008) Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. *Free Radical Biol. Med.* **44**, 671–681.

32. Mehta, S. K., Gaur, J. P. (1999) Heavy-metal–induced proline accumulation and its role in ameliorating metal toxicity in *Chlorella vulgaris*. *New Phytol.* **143**, 253–259.

33. Litwack, G. (2018) *Human Biochemistry*. Academic Press, London/San Diego/Cambridge/Oxford, str. 191-192.

34. Marqusee, S., Robbins, V. H., Baldwin, R. L. (1989) Unusually stable helix formation in short alanine-based peptides. *Proc. Natl. Acad. Sci. U. S. A.* **86**, 5286-5290.

35. Lotan, N., Yaron, A., Berger, A. (1966) The stabilization of the α -helix in aqueous solution by hydrophobic side-chain interaction. *Biopolymers* **4**, 365-368.

36. O'Neil, K. T., DeGrado, W. F. (1990) A Thermodynamic Scale for the Heli-Forming Tendencies of the Commonly Occurring Amino Acids. *Science* **250**, 646-651.

37. Scholtz, J. M., Baldwin, R. L. (1992) The Mechanism of Alpha-Helix Formation by Peptides. *Annu. Rev. Biophys. Biomol. Struct.* **21**, 95-118.

38. Padmanabhan, S., Marqusee, S., Ridgeway, T., Laue, T. M., Baldwin, R. L. (1990) Relative Helix-Forming Tendencies of Nonpolar Amino Acids. *Nature* **344**, 268-270.

39. Merutka, G., Lipton, W., Shalongo, W., Park, S.- H., Stellwagen, E. (1990) Effect of Central-Residue Replacements on the Helical Stability of a Monomeric Peptide. *Biochemistry* **29**, 7511-7515.

40. Lyu, P. C., Liff, M. I., Marky, L. A., Kallenbach, N. R. (1990) Side Chain Contributions to the Stability of Alpha-Helical Structure in Peptides. *Science* **250**, 669-673.

41. Chakrabartty, A., Schellman, J. A., Baldwin, R. L. (1991) Large differences in the helix propensities of alanine and glycine. *Nature* **351**, 586-588.
42. Woutersen, S., Pfister, R., Hamm, P., Mu, Y., Kosov, D. S., Stock, G. (2002) Peptide conformational heterogeneity revealed from nonlinear vibrational spectroscopy and moleculardynamics simulations. *J. Chem. Phys.* **117**, 6833-6840.

43. Zimm, B. H., Brag, J. K. (1959) Theory of the Phase Transition between Helix and Random Coil in Polypeptide Chains. *J. Chem. Phys.* **31**, 526-535.

44. Eker, F., Cao, X., Nafie, L., Schweitzer-Stenner, R. (2002) Tripeptides Adopt Stable Structures in Water. A Combined Polarized Visible Raman, FTIR, and VCD Spectroscopy Study. *J. Am. Chem. Soc.* **124**, 14330-14341.

45. Eker, F., Griebenow, K., Schweitzer-Stenner, R. (2003) Stable Conformations of Tripeptides in Aqueous Solution Studied by UV Circular Dichroism Spectroscopy. *J. Am. Chem. Soc.* **125**, 8178-8185.

46. Schweitzer-Stenner, R., Eker, F., Griebenow, K., Cao, X., Nafie, L. A. (2004) The Conformation of Tetraalanine in Water Determined by Polarized Raman, FT-IR, and VCD Spectroscopy. *J. Am. Chem. Soc.* **126**, 2768-2776.

47. Shi, Z., Olson, C. A., Rose, G. D., Baldwin, R. L., Kallenbach, N. R. (2002) Polyproline II Structure in a Sequence of Seven Alanine Residues. *Proc. Natl. Acad. Sci. U. S. A.* **99**, 9190-9195.

48. McColl, I. H., Blanch, E. W., Hecht, L., Kallenbach, N. R., Barron, L. D. (2004) Vibrational Raman optical activity characterization of poly(L-proline) II helix in alanine oligopeptides. *J. Am. Chem. Soc.* **126**, 5076–5077.

49. Graf, J., Nguyen, P., Stock, G., Schwalbe, H. (2007) Structure and Dynamics of the Homologous Series of Alanine Peptides: A Joint Molecular Dynamics/NMR Study. *J. Am. Chem. Soc.***129**, 1179-1189.

50. Breibeck, J., Skerra, A. (2017) The polypeptide biophysics of proline/alanine-rich sequences (PAS): Recombinant biopolymers with PEG-like properties. *Biopolymers* **109**, 23069-23081.

51. Turner, S. L., Russell, G. C., Williamson, M. P., Guest, J. R. (1993) Restructuring an interdomain linker in the dihydrolipoamide acetyltransferase component of the pyruvate dehydrogenase complex of *Escherichia coli*. *Protein Eng.* **6**, 101–108.

52. Binder, U., Skerra, A. (2017) PASylation®: A versatile technology to extend drug delivery. *Curr. Opin. Colloid Interface Sci.* **31**, 10-17.

53. Čakić Semenčić, M., Barišić, L. (2017) Ferrocene Bioconjugates. *Croat. Chem. Acta* **90**, 537–569.

54. Astruc, D. (2016) Why is Ferrocene so Exceptional? Eur. J. Inorg. Chem. 2017, 6-29.

55. Lal, B., Badshah, A., Altaf, A. A., Khan, N., Ullah, S. (2011) Miscellaneous applications of ferrocene-based peptides/amides. *Appl. Organometal. Chem.* **25**, 843-855.

Realista, S., Quintal, S., Martinho, P. N., Melato, A. I., Gil, A., Esteves, T., Carvalho, M. d. D., Ferreira, L. P., Vaz, P. D., Calhorda, M. J. (2017) Electrochemical studies and potential anticancer activity in ferrocene derivatives. *J. Coord. Chem.* **70**, 314–327.

57. Ludwig, B. S., Correia, J. D. G., Kühn, F. E. (2019) Ferrocene derivatives as anti-infective agents. *Coord. Chem. Rev.* **396**, 22-48.

58. Babin, V. N., Belousov, Y. A., Borisov, V. I., Gumenyuk, V. V., Nekrasov, Y. S., Ostrovskaya, L. A., Sviridova, I. K., Sergeeva, N. S., Simenel, A. A., Snegur, L. V. (2014) Ferrocenes as potential anticancer drugs. Facts and hypotheses. *Russ. Chem. Bull. Int. Ed.* **63**, 2405-2422.

59. Vessieres, A., Top, S., Beck, W., Hillard, E., Jaouen, G. (2006) Metal complex SERMs (selective oestrogen receptor modulators). The influence of different metal units on breast cancer cell antiproliferative effects. *Dalton Trans.* **4**, 529-541.

60. Jaouen, G., Top, S., Vessières, A., Leclercq, G., McGlinchey, M. J. (2004) The First Organometallic Selective Estrogen Receptor Modulators (SERMs) and Their Relevance to Breast Cancer. *Curr. Med. Chem.* **11**, 2505-2517.

61. Liu, Z. Q. (2011) Potential Applications of Ferrocene as a Structural Feature in Antioxidants. *Mini-rev. Med. Chem.* **11**, 345-358.

62. Fouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A., Labib, A. A. (2007) On the medicinal chemistry of ferrocene. *Appl. Organometal. Chem.* **21**, 613–625.

63. Hussein, M. A., Asiri, A. M. (2012) Organometallic Ferrocene- and Phosphorus-Containing Polymers: Synthesis and Characterization. *Des. Monomers Polym.* **15**, 207-251.

64. Moriuchi, T., Hirao, T. (2019) Design of Bioorganometallic Conjugates Composed of Dipeptides or Nucleobases to Induce Chirality-Organized Structures. U: *Advances in Bioorganometallic Chemistry* (Hirao, T., Moriuchi, T., ured.), Elsevier, Amsterdam/Oxford/Cambridge, str. 35-56.

65. Kirin, S. I., Kraatz, H.- B., Metzler-Nolte, N. (2006) Systematizing structural motifs and nomenclature in 1,n'-disubstituted ferrocene peptides *Chem. Soc. Rev.* **35**, 348-354.

66. van Staveren, D. R., Metzler-Nolte, N. (2004) Bioorganometallic Chemistry of Ferrocene. *Chem. Rev.* **104**, 5931-5986.

67. van Staveren, D. R., Weyhermüller, T., Metzler-Nolte, N. (2003) Organometallic β-turn mimetics. A structural and spectroscopic study of inter-strand hydrogen bonding in ferrocene and cobaltocenium conjugates of amino acids and dipeptides. *Dalton Trans.*, 210-220.

68. de Hatten, X., Weyhermüller, T., Metzler-Nolte, N. (2004) Ferrocenoyl peptides with sulfur-containing side chains: Synthesis, solid state and solution structures. *J. Organomet. Chem.* **689**, 4856-4867.

69. Rapić, V., Kovačević, M. (2012) III. Organometalna i bioorganometalna kemija – ferocenski peptidi. *Kem. Ind.* **61**, 71-120.

70. Giannis, A., Kolter, T. (1993) Peptidomimetics for Receptor Ligands—Discovery, Development, and Medical Perspectives. *Angew. Chem. Int. Ed. Engl.* **32**, 1244-1267.

71. Gante, J. (1994) Peptidomimetics-Tailored Enzyme Inhibitors. *Angew. Chem. Int. Ed.* **33**, 1699-1720.

72. Kahn, M. (1993) Peptide Secondary Structure Mimetics: Recent Advances and Future Challenges. *Synlett* **11**, 821-826.

73. Ko, E., Liu, J., Burgess, K. (2011) Minimalist and universal peptidomimetics. *Chem. Soc. Rev.* **40**, 4411-4421.

74. Moriuchi, T., Hirao, T. (2010) Design of Ferrocene-Dipeptide Bioorganometallic Conjugates To Induce Chirality-Organized Structures. *Acc. Chem. Res.* **43**, 1040-1051.

75. Moriuchi, T., Hirao, T. (2012) Dipeptide-Induced Chirality Organization. J. Incl. Phenom. Macrocycl. Chem. 74, 23-40.

76. Moriuchi, T., Nomoto, A., Yoshida, K., Hirao, T. (1999) Characterization of Ferrocene Derivatives Bearing Podand Dipeptide Chains (-L-Ala-L-Pro-OR). *J. Organomet. Chem.* **589**, 50-58.

77. Moriuchi, T., Nomoto, A., Yoshida, K., Ogawa, A., Hirao, T. (2001) Chirality Organization of Ferrocenes Bearing Podand Dipeptide Chains: Synthesis and Structural Characterization. *J. Am. Chem. Soc.* **123**, 68-75.

78. Adhikari, B., Lough, A. J., Barker, B., Shah, A., Xiang, C., Kraatz, H.-B. (2014) Bis-amino Acid Derivatives of 1,1'-Ferrocenedicarboxylic Acid: Structural, Electrochemical, and Metal Ion Binding Studies. *Organometallics* **33**, 4873-4887.

79. Barišić, L., Rapić, V., Kovač, V. (2002) Ferrocene Compounds. XXIX.* Efficient Syntheses of 1'-Aminoferrocene-1-carboxylic Acid Derivatives. *Croat. Chem. Acta* **75**, 199-210.

80. Barišić, L., Rapić, V., Pritzkow, H., Pavlović, G., Nemet, I. (2003) Ferrocene compounds: Part XXXIII. Synthesis and characterization of amino acids containing skeletal 1,1'-ferrocenylene unit. *J. Organomet. Chem.* **682**, 131-142.

81. Barišić, L., Dropučić, M., Rapić, V., Pritzkow, H., Kirin, S. I., Metzler-Nolte, N. (2004) The first oligopeptide derivative of 1'-aminoferrocene-1-carboxylic acid shows helical chirality with antiparallel strands. *Chem. Commun.*, 2004-2005.

82. Barišić, L., Čakić, M., Mahmoud, K. A., Liu, Y., Kraatz, H.- B., Pritzkow, H., Kirin, S. I., Metzler-Nolte, N., Rapić, V. (2006) Helically Chiral Ferrocene Peptides Containing 1'- aminoferrocene-1-carboxylic Acid Subunits as Turn Inducers. *Chem. Eur. J.* **12**, 4965-4980.

83. Čakić Semenčić, M., Dropučić, M., Barišić, L., Rapić, V. (2006) Synthesis of the first heteroannularly substituted ferrocene amino acid and isomeric carbamic acid derivatives containing chiral centres. *Croat Chem. Acta* **79**, 599-612.

84. Čakić Semenčić, M., Barišić, L., Rapić, V. (2007) Approaches to (R)- and (S)-1'-(1- aminoethyl)ferrocene-1-carboxylic acid derivatives. *Tetrahedron: Asymmetry* **18**, 2125-2128.

85. Lapić, J., Pavlović, G., Siebler, D., Heinze, K., Rapić, V. (2008) Structural, spectroscopic, and theoretical study of ferrocene ureidopeptides. *Organometallics* **27**, 726-735.

86. Čakić Semenčić, M., Siebler, D., Heinze, K., Rapić, V. (2009) Bis-and Trisamides Derived From 1'-Aminoferrocene-1-carboxylic Acid and α-Amino Acids: Synthesis and Conformational Analysis. *Organometallics* **28**, 2028-2037.

87. Lapić, J., Djaković, S., Cetina, M., Heinze, K., Rapić, V. (2010) C2-Symmetric Ferrocene– Bis(ureido)peptides: Synthesis, Conformation and Solid-State Structure. *Eur. J. Inorg. Chem.*, 106-114.

88. Lapić, J., Djaković, S., Kodrin, I., Mihalić, Z., Cetina, M., Rapić, V. (2010) Preparation and Conformation Analysis of N-(Ferrocenoyl)dipeptide Esters and Their 1'-Acetyl Derivatives. *Eur. J. Org. Chem.* **13**, 2512-2524.

89. Čakić Semenčić, M., Heinze, K., Förster, C., Rapić, V. (2010) Bioconjugates of 1'-Aminoferrocene-1-carboxylic Acid with (S)-3-Amino-2-methylpropanoic Acid and L-Alanine. *Eur. J. Inorg. Chem.*, 1089-1097.

90. Kovač, V., Čakić Semenčić, M., Kodrin, I., Roca, S., Rapić, V. (2013) Ferrocene-dipeptide conjugates derived from aminoferrocene and 1-acetyl-1'-aminoferrocene: synthesis and conformational studies. *Tetrahedron* **69**, 10497-10506.

91. Djaković, S., Kodrin, I., Smrečki, V., Novak, P., Mihalić, Z., Žiher, D., Lapić, J., Rapić, V. (2014) 1'-Acetylferrocene amino acid esters and amides. A simple model for parallel β-helical peptides. *Tetrahedron* **70**, 2330-2342.

92. Chowdhury, S., Mahmoud, K. A., Schatte, G., Kraatz, H.- B. (2005) Amino acid conjugates of 1,1'-diaminoferrocene. Synthesis and chiral organization. *Org. Biomol. Chem.* **3**, 3018-3023.

93. Djaković, S., Siebler, D., Čakić Semenčić, M., Heinze, K., Rapić, V. (2008) Spectroscopic and theoretical study of asymmetric 1,1'-diaminoferrocene conjugates of α -amino acids. *Organometallics* **27**, 1447-1453.

94. Rapić, V., Čakić Semenčić, M. (2011) I. Organometalna i bioorganometalna kemija – ferocen i metalni karbonili. *Kem. Ind.* **60**, 61-79.

95. Kovačević, M., Kodrin, I., Cetina, M., Kmetič, I., Murati, T., Čakić Semenčić, M., Roca, S., Barišić, L. (2015) The conjugates of ferrocene-1,1'-diamine and amino acids. A novel synthetic approach and conformational analysis. *Dalton Trans.* **44**, 16405-16420.

96. Kovačević, M. (2014) *Ferocenski biokonjugati s aminokiselinama i ugljikohidratima*, Doktorska disertacija, Prirodoslovno-matematički fakultet Sveučilišta u Zagrebu, Zagreb.

97. Kovačević, M., Kodrin, I., Roca, S., Molčanov, K., Shen, Y., Adhikari, B., Kraatz, H.- B., Barišić, L. (2017) Helically chiral peptides containing ferrocene-1,1'-diamine scaffold as a turn inducer. *Chem. Eur. J.* **23**, 10372-10395.

98. Cohen, A. J., Mori-Sánchez, P., Yang, W. (2012) Challenges for Density Functional Theory. *Chem. Rev.* **112**, 289–320.

99. Somsikov, V. (2017) Extension of the Schrodinger equation. EPJ Web Conf. 138, 07003.

100. Hohenberg, P., Kohn, W. (1964) Inhomogeneous Electron Gas. *Phys. Rev.* **136**, B864-B871.

101. Hasnip, P. J., Refson, K., Probert, M. I. J., Yates, J. R., Clark, S. J., Pickard, C. J. (2014) Density functional theory in the solid state. *Phil. Trans. R. Soc. A* **372**, 20130270.

102. Chermette, H. (1998) Density functional theory. A powerful tool for theoretical studies in coordination chemistry. *Coord. Chem. Rev.* **178-180**, 699-721.

103. Sahni, V. (2004) The Hohenberg-Kohn Theorems and Kohn-Sham Density Functional Theory. U: *Quantal Density Functional Theory*, Springer-Verlag, Berlin/Heidelberg/New York, str. 99-123.

104. Heinze, K., Hüttinger, K., Siebler, D. (2011) Elucidation of the Conformational Freedom of Ferrocene Amino Acid (Bio)Conjugates: A Complementary Theoretical and Experimental Approach. U: *Modeling of Molecular Properties* (Comba, P., ured.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, str. 325-346.

105. Perrin, D. D., Armarego, W. L. F (1988) *Purification of laboratory chemicals*, 3. izd., Pergamon Press, Oxford/New York.

106. Karle, I. L. (1999) Hydrogen bonds in molecular assemblies of natural, synthetic and 'designer' peptides. *J. Mol. Struct.* **474**, 103–112.

107. Barišić, L., Kovačević, M., Mamić, M., Kodrin, I., Mihalić, Z., Rapić, V. (2012) Synthesis and Conformational Analysis of Methyl N-Alanyl-1'-aminoferrocene-1-carboxylate. *Eur. J. Inorg. Chem.***11**, 1810-1822.

108. Kong, J., Yu, S. (2007) Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. *Acta Biochim. Biophys. Sin.* **39**, 549-559.

109. Wüthrich, K., Billeter, M., Braun, W. (1984) Polypeptide secondary structure determination by nuclear magnetic resonance observation of short proton-proton distances. *J. Mol. Biol.* **180**, 715-740.

110. Jin, Y., Tonan, K., Ikawa, S. (2002) Competitive formation of 10- and 7-membered hydrogen-bonded rings of proline-containing model peptides. *Spectrochim. Acta A Mol. Biomol. Spectrosc.* **58**, 2795-2802.

111. Moriuchi, T., Nomoto, A., Yoshida, K., Hirao, T. (2001) Intramolecular Conformational Control in Ferrocenes Bearing Podand Dipeptide Chains. *Organometallics* **20**, 1008-1013.

112. Herrick, R. S., Jarret, R. M., Curran, T. P., Dragoli, D. R., Flaherty, M. B., Lindyberg, S.
E., Slate, R. A., Thornton, L. C. (1996) Ordered conformations in bis(amino acid) derivative of
1,1'-ferrocenedicarboxylic acid. *Tetrahedron Lett.* 37, 5289-5292.

113. Kirin, S. I., Wissenbach, D., Metzler-Nolte, N. (2005) Unsymmetrical 1,n'-disubstituted ferrocenoyl peptides: convenient one pot synthesis and solution structures by CD and NMR spectroscopy. *New J. Chem.* **29**, 1168-1173.

114. Xu, Y., Saweczko, P., Kraatz, H.- B. (2001) 1,1'-Ferrocenoyl–oligoprolines. A synthetic, structural and electrochemical study. *J. Organomet. Chem.* **637**, 335-342.

115. Moriuchi, T., Hirao, T. (2010) Design of Ferrocene-Dipeptide Bioorganometallic Conjugates To Induce Chirality-Organized Structures. *Acc. Chem.Res.* **43**, 1040-1051.

116. Moriuchi, T., Nagai, T., Hirao, T. (2005) Chirality Organization of Ferrocenes Bearing Dipeptide Chains of Heterochiral Sequence. *Org. Lett.* **7**, 5265-5268.

117. Moriuchi, T., Nagai, T., Hirao, T. (2006) Induction of β-Turn-Like Structure in Ferrocene Bearing Dipeptide Chains via Conformational Control. *Org. Lett.* **8**, 31-34.

118. Kodrin, I. (2011) Konformacijska analiza ferocenskih peptida, Doktorska disertacija, Prirodoslovno-matematički fakultet Sveučilišta u Zagrebu, Zagreb.

7. PRILOZI

7.1. Prilog 1. Predložene konformacije β -okreta u peptidima **2** i **3** (NOE-kontakti označeni su kvadratićima, a predložene IHB crticama)

7.2. Prilog 2. Predložene konformacije β -okreta u peptidima **4** i **5** (NOE-kontakti označeni su kvadratićima, a predložene IHB crticama)

7.6. Prilog 6. Predložene konformacije u peptidu 15 (NOE-kontakti označeni su kvadratićima, a predložene IHB crticama)

IZJAVA O IZVORNOSTI

Izjavljujem da je ovaj diplomski rad izvorni rezultat mojeg rada te da se u njegovoj izradi nisam koristila drugim izvorima, osim onih koji su u njemu navedeni.

Tea Shipoil

Tea Stipčić